Système vestibulaire, sommeil et mémorisation

*

honduras-80837_1920

*

Voici les résultats très surprenants d’une étude rapportée par France Inter, qui montrent l’impact du système vestibulaire sur la qualité du sommeil et la mémorisation.

Des chercheurs avaient déjà montré l’effet positif du balancement lors d’une sieste de 45 minutes en 2011 (vitesse d’endormissement et sommeil plus profond), ils ont ensuite cherché à savoir ce qu’il en était lors de nuits complètes. Pour cela, ils ont choisi 18 volontaires, hommes et femmes, en bonne santé. Pendant trois nuits, ils ont mesuré l’impact du lit oscillant comparativement au lit immobile, sur l’activité cérébrale, la fréquence cardiaque et respiratoire de ces personnes. Dans le deux situations, les personnes ont bien dormi, ce qui était attendu car aucune d’elles n’avait de troubles du sommeil. Mais, ce qui semble plus surprenant, les oscillations du lit ont eu un impact sur la mémorisation :

Selon l’étude, publiée ce 24 janvier dans Current Biology, « ce qu’on remarque lors des ‘nuits bercées’, c’est un endormissement plus rapide et  des périodes plus longues de sommeil profond » selon Laurence Bayer, chercheuse au département de neurosciences fondamentales de la Faculté de Médecine de l’UNIGE. [...]

Au delà de la qualité de la nuit, les chercheurs ont testé la mémoire. Avant la nuit, les volontaires devaient mémoriser des paires de mots. Au réveil, après les nuits bercées, ils retenaient deux à trois fois plus de paires de mot qu’après une nuit immobile. La mémoire profite donc aussi de ces légers mouvements.

L’article dans son intégralité :

Le fait d’être bercé aide à mieux dormir, même chez les adultes.

En stimulant durant le sommeil le système vestibulaire, qui est un élément important du système postural/proprioceptif, on améliore donc la mémorisation. Ceci nous montre, une fois de plus, qu’on ne peut totalement séparer les capacités cognitives des sensations corporelles. Corps et cerveau sont intimement liés.



Cerveau et mouvement

 

 

 

*

Mise en page 1

*

Voilà un livre qui me semble très intéressant et dont j’ai commencé la lecture. Il est écrit par Lucy Vincent, une neurobiologiste. Une fois de plus, on y découvre le lien étroit qui unit le cerveau aux muscles et au mouvements. Et qui dit muscles, dit proprioception !

 

Voici deux petits extraits très intéressants :

*

En explorant la littérature scientifique, j’ai découvert qu’une révolution scientifique était en cours concernant la science du mouvement. Une révolution lourde de conséquences, que j’ai eu envie de partager avec vous. D’où ce  livre. […] Nul doute que, fortes de ce savoir, nos méthodes d’apprentissage vont être radicalement transformées dans les années qui viennent. Seront concernés les touts-petits, les moins petits et même les plus agés […]Toutes les découvertes exposées dans ce livre datent d’il y a moins de vingt ans, il va sans doute falloir encore vingt ans pour les intégrer dans nos pratiques à l’école, dans les crèches, dans les centres sportifs, les centres de soins. […]

 

« Le mouvement crée le cerveau

Premier point qui mérite réflexion : seuls les êtres vivants qui bougent sont dotés d’un système nerveux central. Si le cerveau a été « inventé » par l’évolution, c’est d’abord pour gérer les mouvements du corps et la coordination des organes.[…]

Chez l’être humain, on sait que la mise en place du cerveau se fait sous l’influence des contractions musculaires spontanées chez le fœtus. Ces micro-mouvements stimulent la mise en place des réseaux nerveux qui commencent à s’activer, envoyant en retour des stimuli aux muscles pour affiner progressivement le contrôle moteur. Les connexions dans le cerveau ou entre le cerveau et le corps sont liées à l’activité des muscles qui, dès leur apparition, commencent à effectuer des mouvements sans utilité apparente, mais qui en réalité , fournissent les stimuli électriques permettant d’organiser les systèmes sensori-moteurs cérébraux. Les neurones ainsi mis en place stimulent à leur tour les muscles qui les ont formés. Ces allers-retours de stimuli-réponses consolident les circuits qui produisent les mouvements typiques qu’on peut voir chez le fœtus et le nouveau-né. Le mouvement et le cerveau sont si étroitement liés qu’il est même possible de diagnostiquer des lésions cérébrales simplement en observant les mouvements de nouveaux-nés ou leur posture au repos.[...]

Le développement de notre cerveau dépend donc des nombreuses expérimentations que font tout naturellement les enfants libres de leurs mouvements : tout goûter, tout éprouver, tout toucher … Toutes les bêtises sont en fait des graines d’intelligence ! Ce sont ces comportements qui leur permettent d’incorporer dans leur cerveau les propriétés du monde pour mieux s’orienter, se nourrir, se chauffer, se protéger et, plus tard, se reproduire. […]

Maintenant, est-ce que les effets du mouvements sur le cerveau se limitent à la construction des circuits qui gèrent a motricité ? Cette question est au cœur d’un domaine de recherche qu’on appelle embodiment et qui vise à comprendre comment les parties du corps en dehors du cerveau contribuent aux processus cognitifs et aux émotions. […]

Nous allons voir que l’intérêt de l’activité physique pour le cerveau ne tient pas uniquement aux bouffées d’endorphines qu’elle procure ou à la meilleurs oxygénation qu’elle entraîne ; en fait, bouger son corps rend aussi plus intelligent !« 




Découverte d’une nouvelle structure cérébrale dans le cerveau humain

*

noyau-endorestiforme-cerveau-humain-750x400

*

J’ai trouvé très intéressant cet article qui relate la découverte, par le neuroscientifique George Paxinos et son équipe du Neuroscience Research Australia (NeuRA), d’une nouvelle structure cérébrale baptisée « noyau endorestiforme », qui semble être une spécificité du cerveau humain. Cerise sur le gâteau, cette zone est impliquée dans la réception d’informations sensorielles et motrices de notre corps afin d’affiner notre posture, notre équilibre et nos mouvements. De là à en conclure qu’elle est impliquée dans la proprioception (ou le système somesthésique), il n’y a pour moi qu’un pas…

Extraits :

« Le neuroscientifique George Paxinos et son équipe du Neuroscience Research Australia (NeuRA), ont baptisé leur découverte « noyau endorestiforme » 
[...]
 Cette zone est impliquée dans la réception d’informations sensorielles et motrices de notre corps afin d’affiner notre posture, notre équilibre et nos mouvements.
 [...]
L’emplacement de cet élément cérébral insaisissable laisse penser à Paxinos qu’il pourrait être impliqué dans le contrôle de la motricité fine — ce qui est également confirmé par le fait que cette structure n’a pas encore été identifiée chez d’autres animaux, y compris les ouistitis ou les singes rhésus.
 [...]
 Les humains ont un cerveau au moins deux fois plus gros que les chimpanzés (1300 grammes contre 600 grammes), et un pourcentage plus important des voies neuronales cérébrales qui signalent le mouvement établissent un contact direct avec les motoneurones — 20% par rapport à 5% chez les autres primates.
[...]
Ainsi, le noyau endorestiforme est peut-être une autre caractéristique unique de notre système nerveux, bien qu’il soit encore trop tôt pour le dire.
L’article dans son intégralité, sur le site « Trust my science » :
*
*

Ainsi donc, les structures du cerveau humain liées à la motricité de notre corps participeraient à la spécificité du cerveau humain ?

Crédits : NeuRa

La danse contre le déclin cognitif

*

danse

*

La danse est une activité qui fait hautement intervenir la proprioception, au point qu‘ elle modèle le cerveau. Alors, j’ai trouvé intéressant cet article de Sciences et Avenir qui montre le lien entre danse et cognition.

En voici deux extraits

On le sait hélas, en vieillissant le cerveau s’altère lentement. Notamment certaines structures comme l’hippocampe, impliqué dans la mémorisation et la navigation spatiale perdent de la matière grise (neurones). Les études en imagerie cérébrale sont implacables : le volume hippocampique se réduit de 2 à 3% par décennie, puis de 1% par an à partir de 70 ans…

Mais, bonne nouvelle, c’est précisément dans cette zone que l’on a découvert la production de nouveaux neurones (neurogenèse), tout au long de la vie. Et l’on sait désormais comment favoriser ce phénomène. Une des méthodes est l’exercice physique.

« De nombreuses études ont montré que l’activité physique stimule la formation de nouveaux neurones, explique ainsi le Pierre-Marie Lledo, professeur de l’Institut Pasteur, le spécialiste français de la neurogenèse. En se contractant, les muscles libèrent notamment des protéines (myokines). Via la circulation sanguine, celles-ci vont activer la libération dans le cerveau de facteurs nutritifs (trophiques) comme le BDNF (brain-derived neurotrophic factor) qui stimule la prolifération de bébés neurones et augmente leur survie.« 

Et si une autre forme de sport était aussi bénéfique ? C’est la question que l’université de Madebourg s’est posée. L’équipe de Notger Müller a ainsi entrepris de comparer les effets de la danse (qui fait intervenir en plus de l’exercice physique des aspects multisensoriels) à ceux du sport aérobique, sur la structure du cerveau.

[...]

Ceci indique que, mis à part l’entrainement physique, les autres facteurs inhérents à la danse contribuent aux changements de volume de l’hippocampe aussi, assurent les auteurs, qui concluent : par conséquent, la danse constitue un candidat prometteur pour contrer le déclin lié à l’âge des capacités physiques et mentales.

L’article dans son intégralité : La danse augmente le volume de l’hyppocampe

Alors, y aurait-il un lien entre proprioception et capacités mentale ? ;)

*

*

*

Note : Photo by ketan rajput on Unsplash

Les illusions d’optique, un bon moyen de comprendre le fonctionnement du cerveau

*

canard-lapin-illusion-optique

*

La réalité de ce que nous percevons est sans cesse reconstruite par notre cerveau, comme le souligne le Pr Alain Berthoz, professeur au collège de France :

Le cerveau de l’homme, comme le cerveau des animaux, ne perçoit le monde qu’à travers ses grilles d’interprétation, ses capacités. C’est-à-dire que le monde tel que nous le percevons [...], est un monde dans lequel nous sélectionnons les informations en fonction de nos a priori, etc.

La perception est décision puisque percevoir c’est à tout moment choisir dans les sens ce que l’on veut voir. On ne peut percevoir que ce qu’on veut voir. (…) le cerveau au fond est une machine qui décide en fonction du passé, de la mémoire, de l’intention.

Les illusions d’optique illustrent très bien cette « re »-construction de la réalité. Je vous propose donc deux extraits d’ un article consacré à ce sujet :

*

Contrairement à ce que l’on pourrait croire, les illusions d’optique occupent une place importante dans la recherche en neurosciences.

D’après Noelle Stiles, une chercheuse post-doctorale spécialisée en biologie et en génie biologique, ces dernières permettent en effet de mieux comprendre les différents processus animant le cerveau et la manière dont il interprète les signaux transmis par les sens.

L’auteure insiste notamment sur le fait que le cerveau ne se contente pas d’analyser froidement les informations délivrées. Il est également programmé pour extrapoler et pour donner du sens à son environnement.[...]

Or justement, les illusions sont un bon moyen de comprendre la manière dont raisonne notre cerveau et de mettre exergue les raccourcis qu’il lui arrive parfois d’emprunter. C’est précisément le cas de l’illusion élaborée par les équipes de Caltech.

Un voyage dans le temps bref, rapide et sans douleur

Le cerveau est alors un peu perdu et il suppose donc qu’il existe un troisième flash situé entre les deux autres. Bien sûr, la vitesse joue aussi un rôle très important dans l’expérience. Les signaux sonores sont en effet déclenchés toutes les 58 ms. D’après les recherches menées, ce flash illusoire est provoqué par le fait que le cerveau utilise un traitement « postdictif ». Le cerveau n’étant pas en mesure d’interpréter correctement les informations transmises, il cherche une explication après avoir perçu les signaux lumineux et sonores. Ce qui le pousse bien entendu à prendre quelques raccourcis.

Mais alors, pourquoi le cerveau répète-t-il exactement la même erreur dans la seconde séquence ? Cette fois, il n’y a pas de signaux sonores, mais le contexte reste inchangé. L’étude suppose donc que le cerveau effectue un bref retour dans le passé pour analyser la scène et tenter de déterminer le nombre de flashs apparents. Comme il en avait faussement perçu trois lors de la première phase, il pense en voir trois durant la seconde. La dernière phase le conforterait d’ailleurs dans cette analyse.

Pour voir cette illusion et lire l’article dans son intégralité, suivre le lien :

*

Les illusions d’optique, un bon moyen de comprendre le fonctionnement du cerveau

Processus Cérébral pour Apprendre à Lire

*

cerveau livre

*

Je vous propose de lire un article très intéressant du blog « Le cerveau de l’enfant et de l’adolescent« , qui reprends les données scientifiques actuelles sur l’apprentissage de la lecture (dont certaines déjà partagées ici), en montrant que celui-ci entraîne une réorganisation complète du cerveau.  En effet, à l’origine, il n’existe pas de zone de la lecture dans le cerveau, la « boîte aux lettres » de la reconnaissance visuelles des mots apparaît sous l’effet de l’apprentissage en « recyclant » des zones qui étaient au départ dédiées à la reconnaissance des visages. Cependant,  un passage de cet article m’interpelle plus particulièrement car il s’intéresse à la transformation profonde que subit le cerveau lors de l’apprentissage de la lecture, en expliquant qu’elle va beaucoup plus loin que des changements dans la couche externe du cortex. Je vous propose donc un extrait de ce billet dont je vous conseille de lire l’intégralité:

*

cerveau apprend à lire

*

Selon des chercheurs allemands de l’Institut Max Planck pour la psycholinguistique et le Max Planck pour la cognition humaine et les sciences du cerveau, avec des scientifiques indiens du Lucknow Biomedical Research Center et de l’Université d’Hyderabad, dans une étude publiée dans la revue Science Advances de mai 2017, la lecture est un énorme défi pour le cerveau et ses effets sont incroyables, au point de pouvoir le façonner et le transformer profondément, même lorsque nous sommes adultes.

Lire est une capacité tellement nouvelle dans notre histoire évolutive qu’elle ne peut pas être “enregistrée” dans les gènes. Quand nous apprenons à le faire, le cerveau doit passer par une sorte de “recyclage”. Les zones destinées à la reconnaissance d’objets complexes, tels que des visages, doivent participer à la traduction des lettres. Et certaines régions de notre système visuel deviennent des “interfaces” entre ce que l’œil voit et le langage.
Le fait est que, jusqu’à présent, les scientifiques ont supposé que ces changements étaient limités à la couche externe du cerveau, le cortex, qui s’adapte rapidement aux nouveaux défis. Mais il s’avère que la transformation qui amène à ouvrir un livre et à le comprendre va beaucoup plus loin.
Les chercheurs ont découvert que lorsqu’un adulte apprend à lire, le cerveau subit une réorganisation qui s’étend jusqu’aux structures profondes du thalamus et du tronc cérébral.
Ils ont observé que les colliculus dits supérieurs, une partie du tronc cérébral, et les pulvinar, situés dans le thalamus, adaptent leur activité à celle du cortex visuel. Ces structures profondes aident notre cortex visuel à filtrer les informations importantes, avant même que nous les percevions consciemment. Fait intéressant, plus les signaux entre les deux régions du cerveau sont synchronisés, meilleures seront les capacités de lecture. Ils croient que ces systèmes cérébraux raffinent leur communication de plus en plus à mesure que les élèves deviennent de plus en plus compétents en lecture. Cela pourrait expliquer pourquoi les lecteurs expérimentés se déplacent plus efficacement à travers un texte.
[...]
Lumière sur la dyslexie
*
Selon les chercheurs, les impressionnants résultats d’apprentissage des volontaires ne sont pas seulement porteurs d’espoir pour les adultes analphabètes, ils mettent également en lumière la cause possible des troubles de la lecture comme la dyslexie, qu’ils croient être due à des dysfonctionnements dans le thalamus, une partie du cerveau qui a été modifiée dans l’expérience avec seulement quelques mois de formation en lecture.
*
L’article dans son intégralité :
*
Il ne vous aura pas échappé que les structures profondes dont parle cet article sont impliquées dans le traitement des informations proprioceptives, et notamment le colliculus supérieur dont le Dr Quercia soulignait déjà l’implication probable dans la dyslexie dans une publication de 2005 (et dont on sait maintenant qu’il est aussi impliqué dans le TDA/H).
*
Allez, encore un effort, on y arrive !
Pièce après pièce, la recherche commence à démontrer les intuitions géniales de médecins précurseurs. :)
*
*
Note : Lire l’ article original de la revue Science Advances  : Learning to read alters cortico-subcortical cross-talk in the visual system of illiterates

La plasticité cérébrale, clé de l’apprentissage

*

cerveau et neurones

*

 

Voici un nouvel article sur la plasticité cérébrale de Catherine Vidal, neurobiologiste et directrice de recherche à l’institut Pasteur (Article publié dans « Traces de ChanGements n°234 (janvier-février 2018), la revue de ChanGements pour l’égalité (CGé).)

Décidément, je trouve toujours ses interventions intéressantes et tellement en phase avec l’objet de ce blog ! :)

En voici un extrait :

L’imagerie cérébrale de l’apprentissage

Grâce à l’IRM, on peut désormais voir le cerveau se modifier en fonction de l’apprentissage et de l’expérience vécue. Par exemple, dans le cerveau de musiciens, on observe des modifications du cortex cérébral liées à la pratique de leur instrument. Des expériences ont été réalisées chez des pianistes professionnels qui avaient commencé le piano à l’âge de six ans. L’IRM a révélé un épaississement du cortex dans les zones spécialisées dans la motricité des mains et l’audition. Ce phénomène est dû à la fabrication de connexions supplémentaires entre les neurones. Un point fondamental de cette étude est que les modifications cérébrales sont proportionnelles au temps consacré à la pratique du piano pendant l’enfance. Ce résultat montre l’impact majeur de l’apprentissage sur la construction du cerveau des enfants dont les capacités de plasticité sont particulièrement prononcées.

La plasticité cérébrale est à l’œuvre également pendant la vie d’adulte. Une étude par IRM chez des chauffeurs de taxi a montré que les zones du cerveau qui contrôlent la représentation de l’espace sont plus développées, et ce proportionnellement au nombre d’années d’expérience de la conduite du taxi. L’apprentissage de notions abstraites peut aussi entrainer des modifications cérébrales. Chez des mathématiciens professionnels, on trouve un épaississement des régions impliquées dans le calcul et la représentation géométrique. Un autre exemple éloquent de plasticité cérébrale a été décrit chez des sujets qui apprennent à jongler avec trois balles. Après trois mois de pratique, l’IRM montre un épaississement des régions spécialisées dans la vision et la coordination des mouvements des bras et des mains. Et, si l’entrainement cesse, les zones précédemment épaissies rétrécissent. Ainsi, la plasticité cérébrale se traduit non seulement par la mobilisation accrue de régions du cortex pour assurer une nouvelle fonction, mais aussi par des capacités de réversibilité quand la fonction n’est plus sollicitée.

[...]

Voir le cerveau penser : mythe et réalité

Un apport majeur de l’IRM est d’avoir démontré comment l’expérience vécue modifie à la fois la structure et le fonctionnement du cerveau. Cette notion est fondamentale à considérer pour éviter de tomber dans le piège de certaines interprétations hâtives. Voir des particularités anatomiques dans un cerveau ne signifie pas qu’elles y sont inscrites depuis la naissance ni qu’elles y resteront gravées.

*

L’article, très intéressant, à lire dans son intégralité :

*

Il n’y a pas à tortiller, Catherine Vidal est très en phase avec ce que disent deux chercheurs dans une publication récente de la revue Brain Sciences,« Is Dyslexia a Brain Disorder ? :) . Un cerveau différent n’implique donc pas forcément un dysfonctionnement cérébral !

*

*

Notes : Vous pouvez aussi lire un autre article très intéressant de Catherine Vidal, sur le site de l’INSERM : Neuroéthique : l’humain n’est pas réductible à son cerveau

Vision aveugle ou inconsciente

*

colliculus

*

J’ai encore trouvé de petites pépites sur la vision inconsciente, qui nous font toujours mieux comprendre le rôle de la voie rétinotectale (dans ce système, une partie des influx nerveux qui proviennent de la rétine se projette sur une petite région appelée colliculus).

Je ne peux copier ici ces articles dans leur intégralité, pour des questions de droits d’auteur, je ne vous en donne que des extraits, mais je vous conseille vivement d’aller les lire dans leur intégralité :)   .

*

Rappelons que selon le Dr Quercia :

*

Même si elle reste largement ignorée des spécialistes de ce domaine, la posturologie fait partie de la neuro-ophtalmologie. Cette dernière, en pratique ophtalmologique courante, s’intéresse surtout à ce qui se passe entre la rétine et le lobe occipital. La posturologie est liée essentiellement à la voie optique accessoire dont nous sous-estimons volontiers l’importance. Elle se penche aussi sur tout ce qui se passe en aval du lobe occipital,  notamment au niveau des aires associatives. C’est là que s’initient probablement beaucoup de fonctions humaines supérieures et les perturbations cognitives du SDP n’ont certainement pas fini d’étonner.[...]

L’œil est un double capteur postural :

  • la rétine périphérique, grâce au système magnocellulaire sensible aux variations de contraste et aux mouvements, joue un rôle primordial dans les réactions posturales adaptatives. Les informations sont véhiculées au cortex par les voies optiques rétino-corticales mais c’est essentiellement le système optique accessoire qui gère les informations posturales provenant de la rétine. Un élément important de ce système est représenté par le colliculus supérieur qui est considéré comme un des centres de la régulation motrice œil-tête. Dissimulé à notre conscience par le flot d’images corticales, le système optique accessoire, fonctionne cependant en permanence.

 

Voici donc un extrait de l’article : De la vision aveugle… sur la route !

*

« Si l’on peut perdre la vision suite à une défaillance de la rétine, on peut aussi, plus rarement, devenir aveugle si notre cortex visuel est lésé des deux côtés.

C’est ce type de lésion qui provoque cet étrange phénomène qu’on appelle la vision aveugle (ou inconsciente). Alors que des personnes atteintes disent ne rien voir, elles peuvent néanmoins réussir à identifier correctement la position d’objets dans l’espace. Comment est-ce possible si elles disent ne rien voir ? En insistant : on leur demande simplement de « prendre une chance », de deviner, en pointant dans une direction où l’objet ou le point lumineux pourrait être. Et la plupart du temps, elles pointent dans la bonne direction. Béatrice de Gelder a même montré que le sujet peut éviter des objets en se déplaçant dans un couloir.

[...]

Ces résultats, pris dans leur ensemble, suggèrent que même chez les individus normaux, une partie de notre vision et de nos réponses émotionnelles à ce que nous voyons tous les jours, est inconsciente. Que nous percevons probablement sans nous en rendre compte une bonne partie des caractéristiques du monde qui nous entoure : des formes simples, des volumes, certains mouvements, certaines couleurs, des émotions exprimées subtilement par des visages…

Quelles seraient alors les régions du cerveau permettant de voir et de répondre à ce que l’on ne sait pas qu’on a vu ? Essentiellement des structures sous-corticales, comme le colliculus supérieur ou le pulvinar, qui envoient des projections directement à différentes aires corticales visuelles sans passer par le cortex visuel primaire (V1)

**

Et voici maintenant un extrait de l’ article : Vision aveugle

*

Il existe une façon de voir inconsciente, plus primitive, qui agit directement sur nos émotions.[...]

Lorsqu’on présente dans son champs visuel aveugle à une personne qui a une lésion du cortex cérébral visuel (aveugle donc) , lorsqu’on lui présente une photo d’un visage et que l’on mesure la dilatation des pupilles, la sueur, le changement du rythme cardiaque, on découvre que la personne répond sans le savoir aux émotions exprimées par le visage sur la photo, la joie ou la peur.
La personne ressent une émotion même si elle ne sait pas qu’elle la ressent.
Mais si l’on présente une photo d’un visage ayant une expression neutre, il n’y a pas de réactions.
Si on mesure la contraction des muscles du visage de la personne qui regarde la photo, on découvre qu’elle commence à mimer l’expression du visage, qu’il y a une ébauche de contraction des muscles impliqués dans le sourire si le visage a une expression joyeuse ou l’ébauche de contraction des muscles impliqués dans le froncement des sourcils si le visage exprime la peur, suggérant que les neurones miroirs de la personne en train de regarder sont en train de faire ressentir chez la personne qui ne sait pas qu’elle est en train de voir l’expression, l’émotion qu’elle voit sans le savoir sur le visage de l’autre.

Que signifie voir ?
Que signifie être conscient de ce que l’on voit ?

Lorsqu’on ne dit rien à la personne aveugle en lui projetant les images, elle réagit mais dit qu’elle n’a rien vu. Elle ne sait pas qu’elle réagit à quelque chose.
Si on lui demande qu’est ce que vous voyez, elle répond « rien ».
Mais si c’était une émotion, ce serait de la joie ou de la peur ? La personne répond alors le plus souvent correctement.
Si son attention est attirée  sur ce qu’elle voit sans le savoir, si on lui dit qu’elle peut simplement deviner, se jeter à l’eau, alors elle devient capable de dire avec des mots ce à quoi elle a réagit sans le savoir.
C’est comme si l’attention, dans la vision aveugle faisait émerger l’inconscient à la conscience incomplètement dans un entre deux ou se mêle la conscience et l’incertitude.
[...]

Mais quelle est cette région qui permet de voir et de répondre a ce que l’on ne sait pas qu’on a vu ?

Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle.
L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus.
Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activée par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
Mais l’imagerie cérébrale révèle que cette petite région et d’autres régions impliquées dans les émotions, les réponses motrices, les gestes, sont activées au cours la vision aveugle.
Et chez les personnes n’ayant pas de visions cérébrales, cette région est activée plus vite et pour des seuils d’activation plus faible que le cortex visuel. La vision pleinement consciente , celle qu’élabore le cortex visuel, est plus riche mais plus lente et nécessite un évènement visuel plus intense pour se déclencher que la vision aveugle.

 

*

Enfin, je vous propose aussi de visionner l’explication donnée sur la chaine de vulgarisation scientifique « E-penser » (j’ai sélectionné le passage, clic sur l’image) sur les capacités de perception des aveugles privés de cortex visuel primaire, où il aborde notamment le rôle du colliculus :

*

voie visuelle accessoire

*

*

 Lire aussi : Les différentes voies visuelles

Comment notre cerveau décide-t-il de fuir en cas de menace ?

*
*
colliculus
*
*
Je vous ai déjà parlé du colliculus supérieur, cette zone du cerveau qui est la « centrale » contrôlant la direction des saccades oculaires en fonction de la représentation que nous avons de l’espace environnant (nous avons d’ailleurs vu que le colliculus est impliqué dans le TDA/H).
*
Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle. L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus. Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activées par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
*
Le colliculus supérieur est une structure primaire d’analyse multi-sensorielle, c’est le lieu où se rencontrent les données sensitives de la proprioception des muscles oculomoteurs (information sur la position des globes oculaires dans leur orbite = localisation spatiale visuelle), les données sensorielles de la voie visuelle accessoire (rétine périphérique=perception du mouvement) et du cortex visuel (information visuelle), mais aussi des informations somato-sensorielles (toucher, proprioception) et auditives. Il y a dans le colliculus supérieur des cellules qui réagissent à la localisation spatiale, à l’audition, la vision, la proprioception et les neurophysiologistes ont démontré qu’une information sensorielle est mieux codée si le sujet la localise correctement dans l’espace : si les informations sensorielles sont congruentes, la réponse du neurone est supérieure.
 
J’ai donc trouvé très intéressant cet article de Libération, qui nous montre le rôle essentiel du colliculus dans la décision de prendre la fuite face à une menace (système très archaïque, il s’agit d’assurer la survie):
Lorsque nous sommes face à une situation menaçante, notre premier réflexe est d’évaluer le danger puis de décider ou non de prendre la fuite. Mais comment notre cerveau prend-il cette décision ? Comment arrive-t-il à évaluer le niveau d’une menace ? Une équipe de chercheurs anglais est parvenue à répondre à ces questions. Publiés dans la revue Nature, leurs résultats pourraient être très utiles pour comprendre certains troubles du comportement humain. [...]
*

Certaines personnes atteintes de stress post-traumatique ou souffrant de phobie sociale se sentent menacées en toutes circonstances, comme si leur cerveau n’était pas capable d’évaluer si une situation est vraiment dangereuse et de prendre la bonne décision quant à une fuite.[...]

Les chercheurs ont identifié deux régions, situées à la base du cerveau, ayant un rôle crucial dans la décision de prendre la fuite : le colliculus supérieur et la substance grise périaqueducale. Plus précisément, c’est la connexion entre ces deux régions qui va déclencher la fuite.

Explication : un évènement menaçant est capté par l’œil. Les neurones de la rétine transfèrent l’information aux neurones du colliculus supérieur. Ces neurones font alors appel à leur propre mémoire et analysent la situation. [...]

Si la situation est dangereuse, l’activité neuronale dans le colliculus supérieur augmente. Passé un certain seuil d’activité, la connexion avec la substance grise périaqueducale s’établit et le cerveau prend alors la décision de fuir. En revanche, si l’activité n’est pas assez importante dans le colliculus supérieur, la connexion ne se fait pas et il n’y a pas de fuite.

«On peut dire que les neurones du colliculus supérieur prennent la décision et que les neurones de la substance grise périaqueducale l’exécutent», résume Henrique Sequeira, professeur de neurosciences à l’université des sciences et technologies Lille 1.

*

L’article dans son intégralité :  Comment notre cerveau décide-t-il de fuir en cas de menace ?

*

Je trouve les résultats de cette étude très intéressants et parfaitement en phase avec les travaux du Dr Quercia (notamment avec le symptôme de l’inconfort dans la foule). Un nombre trop important d’erreurs causées par un dysfonctionnement proprioceptif est à l’origine d’une incohérence entre les différentes informations sensorielles qui parviennent au colliculus. Dès lors, celui-ci peut-il analyser sereinement la situation ?

En tout cas, cet article me parle, à moi qui suit dysperceptive dysproprioceptive, à moi qui doit lutter très fréquemment contre ce sentiment d’angoisse inexpliqué : dans la foule, quand il y a ne nombreuses voitures en mouvement autour de moi, face à une situation nouvelle dont je ne maîtrise pas tous les aspects, etc. (Même si je sais le cacher et donner l’illusion que tout va bien ;) )

 

Le cortex moteur aide à mieux entendre

*

Cerveau audition

*

La perception et l’action sont intimement liées chez l’humain. De manière constante et le plus souvent inconsciente, nous percevons pour agir et nous agissons pour percevoir. Lorsque nous saisissons un objet, nous ajustons la trajectoire de notre main en fonction de ce que nous voyons et nous déplaçons notre tête pour mieux voir ou entendre, par exemple. Ce couplage joue un rôle essentiel dans nos interactions avec le monde.

Dans ce couplage perception/action  la proprioception joue un rôle fondamental dans la manière dont notre cerveau gère les informations venant de nos autres sens. Le Pr JP Roll (CNRS) considère la proprioception comme « le  sens premier, celui qui donne du sens aux autres sens » :

 

« Comment pourrions-nous localiser une cible visuelle dans l’espace sans que le système nerveux soit précisément informé du lieu où se trouve le corps et notamment l’œil ? »  

*

En effet, la proprioception ne fonctionne pas indépendamment, mais en connexion avec les autres organes des sens et influence fortement leur travail en donnant constamment au cerveau l’indication de leur place respective dans le corps. Nos oreilles ne sont pas orientables, pour écouter en direction d’un son nous devons tourner la tête et les capteurs proprioceptifs des muscles du cou informent le cerveau de l’orientation de notre tête. De la même manière, le cerveau est informé de la direction de notre regard par le biais des muscles du cou, mais aussi grâce aux muscles oculomoteurs qui le renseignent sur la position des globes oculaires dans leur orbite. La proprioception permet de localiser les informations visuelles et auditives et joue ainsi un rôle important dans la manière dont le cerveau va traiter ces informations.

 

Nous savons aussi que notre cerveau est en permanence « bombardé » d’informations sensorielles : ouïe, vue, toucher, odorat, proprioception, douleur, chaleur, etc. Il ne peut toutes les traiter et seules arrivent à notre conscience celles qui sont utiles à ses objectifs. Il génère des prédictions sur le monde extérieur et sélectionne les informations sensorielles qu’il va utiliser, en fonction de ses simulations, ses expériences passées et de ses buts (Pr Alain Berthoz, Collège de France). La réalité de ce que nous percevons est sans cesse reconstruite par notre cerveau. Nous pouvons très bien ne pas « voir » des éléments flagrants qui sont pourtant sous nos yeux. A l’inverse, nous verrons mieux un objet si le cerveau peut  prédire son apparition.

*

Dans le même ordre d’idées, j’ai trouvé très intéressant cet article de l’INSERM :

 

Le cortex moteur aide à mieux entendre

 

Extrait :

 

Le cortex moteur aide le système auditif à mieux entendre. C’est ce qu’a constaté une équipe Inserm en étudiant l’impact des rythmes sur la perception auditive.

« Quand une personne est dans sa voiture et que le feu passe à l’orange, elle sait qu’elle doit s’arrêter et s’y prépare. Il y a une anticipation. La question que nous nous posions était de cet ordre-là : lorsqu’il s’agit d’audition, qu’est ce qui permet d’anticiper ce que l’on va entendre et d’en améliorer ainsi la perception ?« , explique Benjamin Morillon*, co-auteur de ces travaux avec Sylvain Baillet de l’Université McGill à Montréal. « Nous savions qu’un son rythmé est mieux intégré qu’un bruit désorganisé. Par ailleurs, nous savions également que le cortex moteur est impliqué dans la perception de tous les autres sens : la vue, le toucher, l’ouïe et l’odorat. Il permet de faire bouger les organes sensoriels pour améliorer la perception, notamment les yeux, la langue, les doigts, ou encore la truffe chez les animaux. Il permet également de capter une temporalité, c’est-à-dire qu’il est sensible à un signal récurrent ou prévisible, et permet donc d’anticiper un évènement à venir. Par exemple, on verra mieux un objet si on sait quand il va apparaître. Nous nous sommes donc demandés si le cortex moteur pouvait aussi jouer un rôle dans le lien entre son rythmique et qualité d’écoute. Peut-il capter une certaine temporalité des sons pour augmenter la perception auditive ? Autrement dit, est-ce que le rythme sonore, le flux d’une voix, pourrait être capté par le cortex moteur pour améliorer l’écoute ?« , raconte le chercheur.

Pour le vérifier les scientifiques ont exposé des volontaires à différentes fréquences sonores émises à intervalles réguliers et ont enregistré leur activité cérébrale par magnétoencéphalographie, une technique qui permet de mesurer le champ magnétique très faible produit par l’activité des neurones. Cela leur a permis de constater que lorsqu’un son est émis de façon rythmique, le cortex moteur s’active et des oscillations neurales se propagent vers le cortex auditif, augmentant la perception de ce son par rapport à un bruit de fond : « Nos résultats démontrent qu’il existe une forme de perception active en audition, avec un système moteur faisant partie intégrante du traitement auditif, clarifie Benjamin Morillon. La communication entre les cortex auditifs et moteurs est indispensable à une écoute de qualité« , précise-t-il. Cela signifie que lorsqu’une personne se concentre sur une voix, le cortex moteur en saisit le flux, le rythme, et que cela aide à comprendre ce qui est dit. Il capte un signal rythmique et prépare en quelque sorte le cortex auditif à entendre le son suivant. D’ailleurs ce coup de pouce du cortex moteur s’observe davantage en milieu sonore bruyant. « Quand le son est difficile à distinguer parmi d’autres, comme au cours d’une soirée animée, l’activation de cette région est importante pour aider le système auditif à entendre. A l’inverse, quand l’environnement est silencieux et que les sons sont bien distincts, cette activation ne se fait pas ou peu« , explique le chercheur. [...]

*

*

Le système moteur fait donc partie intégrante du traitement auditif, or si le cortex moteur fait bouger les organes sensoriels pour améliorer la perception, ce sont les capteurs proprioceptifs qui indiquent au cerveau où son situés nos organes sensoriels pour lui permettre de bien les positionner. En conclusion, l’hypothèse d’un dysfonctionnement proprioceptif qui interférerait dans le traitement des informations auditives (comme visuelles) chez le dyslexique est tout à fait compatible avec les résultats de ces recherches. ;)

*

*

Note : Voir aussi cet autre article de l’INSERM sur un thème proche: Corriger la dyslexie en rythme

123

Thérapie Asie |
Themassagetube |
Hubert90 |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | Pharmanono
| Le blog de Jacques Le Houezec
| Sevragebenzo