Lettre de rentrée/dysfonction proprioceptive

*

Lettre de rentrée/dysfonction proprioceptive dans Dys rentree2016-349

*

 

J’ai publié, sur mon groupe, la lettre de rentrée que j’ai préparée pour les professeurs de Marc. Suite à plusieurs demandes de parents me demandant s’ils pouvaient s’en inspirer, je vais la partager aussi ici. Je me suis appuyée sur un document du Dr Quercia  (Chercheur associé – Unité INSERM U1093 Cognition Action et Plasticité Sensorimotrice) pour la description des symptômes engendrés par une dysfonction proprioceptive. Cette lettre est à adapter au cas de votre enfant. Je joins aussi un exemplaire de lettre de renouvellement de PAP, si ça peut aider ;)   :

*

Lettre de rentrée  (Docx)

*

Lettre de rentrée (Pdf)

*

*

Renouvellement PAP (Docx)

*



Un autre regard sur la dyslexie

*

R*

J’avais depuis longtemps dans mes « cartons » cette vidéo très intéressante, mais je n’avais jamais pris le temps d’écrire un article sur mon blog. Elle se regarde avec d’autant plus d’intérêt, quand on sait que la « centrale » qui contrôle la direction des saccades oculaires, en fonction de l’espace environnant, est une petite structure du cerveau nommée colliculus supérieur, qui reçoit les données de la proprioception des muscles oculomoteurs (et oui, pour coordonner ses yeux et diriger correctement son regard, il faut que le cerveau sache où est l’œil dans son orbite … ;) ).

*

*

Zoï Kapoula, directrice de recherche au CNRS, est accueillie dans un Collège Lycée pour faire des tests montrant le rapport entre motricité, vision et dyslexie. Un casque spécial a été mis au point pour cette étude et est testé sur des enfants. Ce dispositif est associé à un système informatique et rend compte, en temps réel, de tous les mouvements de chacun des deux yeux. Ces dys-coordinations et instabilités pourraient expliquer en partie la lenteur de la lecture chez les enfants dyslexiques. (Clic sur l’image pour accéder à la vidéo) :

*

Autre regard sur la dyslexie

*




Dysfonctions linguales et dyslexie

 *

Dysfonctions linguales et dyslexie dans Dys psoriasis-langue-200x300

*

Notre cerveau est en permanence « bombardé » d’informations sensorielles : ouïe, vue, toucher, odorat, proprioception, douleur, chaleur, etc. Il ne peut toutes les traiter et seules arrivent à notre conscience celles qui sont utiles à ses objectifs. Il génère des prédictions sur le monde extérieur et sélectionne les informations sensorielles qu’il va utiliser, en fonction de ses expériences passées et de ses buts (Pr Alain Berthoz) :

 Le cerveau de l’homme, comme le cerveau des animaux, ne perçoit le monde qu’à travers ses grilles d’interprétation, ses capacités. C’est-à-dire que le monde tel que nous le percevons [...], est un monde dans lequel nous sélectionnons les informations en fonction de nos a priori, etc. »

« La perception est décision puisque percevoir c’est à tout moment choisir dans les sens ce que l’on veut voir. On ne peut percevoir que ce qu’on veut voir. (…) le cerveau au fond est une machine qui décide en fonction du passé, de la mémoire, de l’intention. »

La réalité de ce que nous percevons est sans cesse reconstruite par notre cerveau et nous pouvons très bien ne pas « voir » des éléments flagrants qui sont pourtant sous nos yeux. Le cerveau reçoit des informations de ses différents capteurs sensoriels, mais nous ne prêtons attention qu’à certaines d’entre elles. A titre d’exemple, vous pouvez visionner cette vidéo (en anglais) très parlante ;) :

*

Image de prévisualisation YouTube

*

Les systèmes attentionnels au niveau cérébral fonctionnement très largement par automatismes, ce qui a pour effet positif de décharger notre cortex préfrontal qui se met ainsi en « pilotage automatique ». Ce faisant, néanmoins, le danger pour le cerveau est de passer à côté d’informations essentielles. Or, en cas de dysproprioception le cerveau situe mal, dans l’espace,  les sources de ses stimuli sensoriels et élimine malheureusement des informations qui lui sont pourtant nécessaires. Des suppressions temporaires et aléatoires d’informations visuelles apparaissent alors dans certaines positions du regard (signe d’une incohérence entre l’information proprioceptive et l’information visuelle), mais aussi dans le bruit  (signe d’une incohérence entre l’information proprioceptive, visuelle et auditive).

Parmi les dysfonctionnements proprioceptifs, les dysfonctions linguales peuvent aussi être à l’origine de conflits sensoriels et conduire à des pertes d’information visuelle (et sans doute auditive). Je vous propose de découvrir, dans l’article suivant écrit par une orthodontiste, comment les yeux, la bouche et les oreilles sont une même unité sensorielle (par l’intermédiaire du nerf Trijumeau) et comment les troubles linguaux peuvent parfois laisser présager une dyslexie avant même l’apprentissage de la lecture.

*

Extrait :

*

Le nerf Trijumeau, cinquième paire de nerfs crâniens, est ainsi appelé car il se compose de trois branches qui irradient la face et la bouche : deux branches sensitives (ophtalmique et maxillaire) et une branche sensitivomotrice (mandibulaire). Mais il possède également des ramifications avec les yeux (proprioception des muscles oculomoteurs) et les oreilles (tenseur du tympan).

De ce fait, le nerf Trijumeau va mettre en lien la bouche, les yeux et les oreilles créant une même unité sensorielle : parler, voir et entendre sont liés. [...]

Toujours par rapport à l’unité trigéminale sensorielle yeux/bouche/ oreilles/, on peut observer chez certaines personnes des petites pertes visuelles en fonction de l’environnement sonore. C’est-à-dire que certains sons (perçus par le tympan) vont, par l’intermédiaire du nerf Trijumeau, venir perturber les muscles oculomoteurs et donc la perception visuelle.

Ces anomalies visuelles sont absolument inconscientes c’est à dire que le sujet ne sait pas qu’il ne voit pas correctement, ne se rend pas compte qu’il a de petites zones aveugles aléatoirement placées dans son champ de vision. Et cela indépendamment de son niveau d’acuité visuelle.

Ces petits défauts visuels sont d’autant plus invalidants lorsqu’ils surviennent chez un enfant qui rentre dans la lecture.  Comme sa mémoire lexicale est peu riche, il ne peut pas « deviner » le mot en n’en voyant qu’une partie comme saurait le faire un adulte. De plus, il peut éprouver des difficultés à suivre l’enchaînement des mots au fil de la phrase et se perdre dans le texte lors du « retour à la ligne » (d’où le besoin de lire en s’aidant de son doigt ou d’une règle).

Si l’environnement sonore peut perturber la perception visuelle, il peut en être également de même par rapport au positionnement de la langue (toujours en lien avec le nerf Trijumeau) en fonction du contact contre certaines dents. Cela explique pourquoi certains enfants éprouvent des difficultés à lire à haute voix (qu’ils soient dyslexiques ou pas d’ailleurs) : certains contacts dentaires lors des mouvements linguaux accentuent les pertes visuelles.

 [...]

Or, si on en revient à la langue, on a observé que chez les enfants dyslexiques on retrouvait très souvent une dysfonction linguale présente avant même l’apprentissage de la lecture. Voyons quels peuvent en être les signes. [...]

*

L’article dans son intégralité :

LES DYSFONCTIONS LINGUALES,   SIGNES PRECURSEURS DE LA DYSLEXIE ?

 

Sources :

Perception, attention et mémoire

Entretien avec Alain Berthoz

Lecture, cerveau et dyslexie

*

cerveau dyslexique

*

On l’a vu précédemment, le cerveau se modifie en permanence, se sculpte sous l’effet de l’apprentissage et par conséquent un cerveau différent n’implique pas forcément un trouble neurologique, mais peut simplement être le reflet du niveau d’expertise d’une compétence. C’est l’idée que soutiennent deux chercheurs dans une publication récente de la revue Brain Sciences Is Dyslexia a Brain Disorder ?« , où ils s’attaquent au « dogme » de l’origine neurologique de la dyslexie et suggère que celle-ci est plutôt le résultat de différences interindividuelles :

Cependant, les différences dans les cerveaux existent certainement chaque fois que des différences de comportement existent, y compris des différences dans la capacité et la performance. Par conséquent, les découvertes de différences cérébrales ne constituent pas une preuve d’anomalie ; elles documentent plutôt simplement le substrat neuronal des différences de comportement.

La conclusion de ces chercheurs est tout a fait en accord avec deux publications récentes, dont une  étude française rapportée dans un article de Sciences et Avenir, où des chercheurs  ont visualisé, pour la première fois, comment se forme la zone cérébrale dédiée à l’apprentissage de la lecture chez l’enfant. Ils ont montré que cette zone n’existe pas chez l’enfant pré-lecteur et apparaît petit à petit sous l’effet de l’apprentissage :

*

avant et après apprentissage

*

 

Extrait de l’article :

*

Une zone d’activité émerge peu à peu dans l’hémisphère gauche

*

Les chercheurs ont alors constaté que, chez les enfants, chaque catégorie d’image active, comme chez l’adulte, une zone spécialisée du cortex visuel. Sauf pour les mots. Au départ (grande section de maternelle) la « boîte aux lettres » (qui répond plus aux mots qu’aux images) n’apparaît pas chez les enfants. Elle peut commencer à s’activer dès fin novembre de l’année de CP pour certains. Pour les autres, elle émerge plus lentement, la réponse de cette région étant proportionnelle aux performances de lecture. Un an plus tard, une fois la lecture des mots familiers automatisée, la zone, bien en place, persiste dans l’hémisphère gauche. Les enfants savent lire, et ça se voit dans le cerveau ! 

*

A quoi servait donc cette région cérébrale avant d’être spécialisée dans la lecture? Les chercheurs sont retournés aux premiers IRMf pour le savoir. Ils ont alors découvert que la « boîte aux lettres » était « libre »avant l’apprentissage. En revanche — IRM f à l’appui —, son développement entraîne le blocage du développement de la zone liée à la réponse aux visages dans l’hémisphère gauche. « Nous apprenons donc à lire aux enfants à un moment de plasticité de cette région qui augmenterait sa réponse aux visages dans le milieu naturel », expliquent les auteurs. Autrement dit, les enfants pourraient développer davantage la reconnaissance des visages s’ils n’apprenaient pas à lire.

*

L’article dans son intégralité : Comment le cerveau apprend à lire

*

************

*

publi Clark

*

Dans une étude pécédente, d’autres chercheurs avaient réalisé des  IRM fonctionnelles à 27 enfants norvégiens de familles dyslexiques, avant que l’apprentissage de la lecture ne commence et jusqu’à après que la dyslexie ne soit diagnostiquée. Ils ont ainsi pu déterminer que les anomalies neuroanatomiques primaires qui précédaient la dyslexie n’étaient pas situées dans la zone de la lecture elle-même, mais plutôt dans des zones de niveau inférieur, responsables du traitement auditif et visuel et des fonctions exécutives de base. Les anomalies de la zone de  lecture elle-même n’ont été observées qu’à l’âge de 11 ans, après que les enfants aient appris à lire. Les résultats suggèrent que les anomalies dans la zone de lecture sont la conséquence d’ expériences de lecture différentes, plutôt que la dyslexie en soi, alors que les précurseurs neuroanatomiques se situent principalement dans les cortex sensoriels.

*

L’article en anglais :

Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11, Brain. 2014 Dec;137(Pt 12):3136-41

 

******

La première image, représentant les aires activées lors de la lecture chez le dyslexique et le lecteur normal, provient de l’article : L’imagerie du cerveau dévoile les secrets de la dyslexie

 

 

 

 

Principes du traitement proprioceptif chez le dyslexique et le dyspraxique.

*

Sans titre

*

Depuis que j’anime un petit groupe de parole sur le traitement proprioceptif des troubles des apprentissages ; je constate, malheureusement, que toutes les prises en charge proposées ne se valent pas et que certaines sont pour le moins surprenantes ! (La dernière en date : une prise en charge proprioceptive sans semelles proprioceptives, l’enfant n’ayant pas été dirigé vers un podologue :(   ).

Voici donc un texte du  Dr Quercia   (Chercheur associé – Unité INSERM U1093 Cognition Action et Plasticité Sensorimotrice) expliquant les grands principes du traitement proprioceptif des dys, tel qu’il le développe et tel qu’il est enseigné dans le cadre du DU du PATA de l’Université de Bourgogne.

Si le traitement de votre enfant ne suit pas ce schéma, vous pouvez vous questionner  …

 

 

 

La prise en charge proprioceptive est un acte médical coordonné. Aucun praticien ne peut travailler seul car une modification d’un seul capteur ne suffit jamais. Elle demande une participation active du patient et de la famille qui doit être soudée pour porter l’enfant.

Le traitement repose, après analyse détaillée de l’histoire du patient et lecture des différents bilans à disposition, sur l’utilisation raisonnée et personnalisée de :

- Prismes actifs de très faible puissance qui modifient la proprioception oculaire, inclus dans des montures dont la forme et la stabilité suit un cahier des charges très précis (dispo dans « section pro » de www.dyslexie.fr) ,

- Modifications de la perception orale (l’occlusion, élément mécanique, est au second plan) par des ALPH, qui sont des micro-élévations (500 à 800µ) de composite dentaire classique, posées à des endroits précis sur les incisives, en nombre toujours pair,

- Port d’orthèses plantaires de type « proprioceptif », caractérisées par de surélévations qui sont en règle d’une épaisseur inférieure à 3 mm, placées au niveau de zones qui dépendent du déséquilibre postural de l’enfant,

- Rééducation proprioceptive centrée sur le retour à une respiration physiologique afin de supprimer les phénomènes nocturnes apnéiques (responsables de troubles attentionnels, de faiblesse de la mémorisation et de fatigue chronique). Elle est associée à des postures ergonomiques pour le travail et le sommeil. Cette rééducation est auto-apprise et journalière,

L’efficacité du traitement s’évalue à partir de 4 niveaux de plus en plus délicats à obtenir :

- Régulation des lois du tonus, et secondairement de la posture,
– Normalisation du Maddox Postural (localisation spatiale visuelle stable quelle que soit les stimulations),
– Absence de pseudoscotomes visuels avec des sons mono fréquentiels,
– Absence de pseudoscotomes visuels avec des sons multi fréquentiels.

Ainsi, réguler la posture d’un dyslexique n’est qu’une première étape du traitement et ne doit pas satisfaire le thérapeute ou l’amener à supprimer une des stimulations quand la posture semble normale (podale par exemple).

La prise en charge doit suivre un arbre décisionnel précis (toutes les situations sont envisagées dans le dernier chapitre du livre « Oeil et Bouche » disponible sur amazon)

Le traitement proprioceptif doit être un préalable aux autres rééducations, notamment orthophoniques. Il s’agit de mettre l’enfant dans des conditions sensorielles qui lui permettront ensuite de profiter pleinement des rééducations et d’une pédagogie adaptée.

La surveillance clinique est programmée en fonction de l’évolution. Un « dys » qui progresse régulièrement à l’école, n’a plus de douleurs musculaires, plus de troubles du sommeil et de l’attention, nécessite une simple surveillance annuelle.

Il est essentiel d’éviter la surmédicalisation des patients par des prises en charge rééducatives multiples qui s’ajoutent à des journées d’école difficiles et des séances de devoirs interminables.

*

************

*

prismes 2

*

Note : Dans la vidéo suivante, il ne s’agit pas des prismes utilisés dans le traitement proprioceptif, qui sont des prismes de très faible puissance. Il y est question de la prise en charge prismatique de l’héminégligence. Mais je trouve cette vidéo intéressante, car elle explique bien le principe de l’adaptation prismatique et son application à la rééducation cognitive. Notamment, on voit comment les prismes modifient la perception de l’espace et comment le cerveau s’adapte, petit à petit, à cette nouvelle perception, en corrigeant  le mouvement (mauvaise perception de l’espace, qui n’est pas sans rappeler ce qu’on peut observer dans la dyspraxie Principes du traitement proprioceptif chez le dyslexique et le dyspraxique. dans Dys 1f609  ) :

*

Image de prévisualisation YouTube

*

Plasticité cérébrale, apprentissage et cerveau des dyslexiques

*

Plasticité cérébrale, apprentissage et cerveau des dyslexiques dans Dys 00eb59e2-a120-11e2-8974-e21f2a7884e1-600x460

*

 

La plasticité cérébrale est au cœur de l’hypothèse de l’origine proprioceptive de la dyslexie (et de certains autres troubles des apprentissages). En effet, la proprioception est un sens particulier qui s’appuie sur la plasticité cérébrale , toutes nos actions motrices laissant une trace dans notre cerveau. Du fait de cette neuroplasticité, un dysfonctionnement proprioceptif serait donc à l’origine d’un développement différent du cerveau. Cette même plasticité cérébrale permettrait ensuite au cerveau de se réorganiser, avec de l’entraînement, dès lors que la proprioception serait normalisée grâce au traitement proprioceptif. L’ action des différentes rééducations (orthophonie, etc.) serait alors potentialisée du fait d’un terrain sensoriel de meilleure qualité (en effet, la proprioception est non seulement considérée comme un sens à part entière, mais comme un sens premier à partir duquel nous pouvons interpréter nos autres sens).

Cette notion de plasticité cérébrale est donc fondamentale pour comprendre l’hypothèse de l’origine proprioceptive de la dyslexie et l’intérêt de la rééducation proprioceptive. Je vous propose donc un nouvel article consacré à ce sujet, montrant que la plasticité cérébrale se situe au cœur des apprentissages, ainsi qu’une publication toute récente qui replace le cerveau des dyslexiques au cœur de cette neuroplasticité.

*

Je vous propose déjà deux  extraits du premier article, écrit par neurobiologiste, mais l’ensemble de cette publication est à découvrir ( et vous y trouverez les sources de l’auteur) :

*

Une première période se passe in utero, elle consiste en la production de neurones (le cerveau adulte en a environ 100 milliards) et de leur positionnement au sein du cerveau (les neurones migrent de leur lieu de production vers leur destination finale). Chez l’humain, cette période commence vers la 10ème semaine de grossesse et s’arrête vers la fin du 5ème mois.

Une seconde période commence in utero (vers le 6ème mois de grossesse) et se prolonge bien après la naissance (jusqu’à 25-30 ans environ le cerveau n’est pas considéré comme mature !). Elle consiste en la formation de connexions entre les neurones, les synapses (le cerveau adulte en a environ 100 mille milliards), ainsi qu’en l’élimination de synapses et de neurones.On peut parler de plasticité cérébrale pour cette seconde période.

Un nombre excédentaire de neurones et de synapses est produit au cours du développement cérébral. Un long travail de « sculpture » du cerveau a lieu ensuite pour équilibrer leur nombre, ajuster les connexions entre les neurones et entre les régions cérébrales. L’élimination des neurones excédentaires est en grande partie terminée à la naissance (une seconde phase d’élimination aura lieu à l’adolescence) mais l’élimination des synapses excédentaires s’opère jusqu’à la fin de la maturation du cerveau (vers 25-30 ans) ! Le cortex cérébral préfrontal, impliqué notamment dans l’attention, la planification, la prise de décision et le contrôle des émotions, est la dernière région à devenir mature.

La plasticité cérébrale après la naissance est dépendante de l’environnement dans lequel l’enfant puis le jeune adulte grandit.Les activités auxquelles l’enfant participe, ses expériences, l’apprentissage (par exemple celui des mathématiques, de la musique et des langues), les interactions avec les parents (et interactions sociales en général), participent à la structuration du cerveau. Même si la personne ne réutilise pas ensuite ce qu’elle a appris (une langue ancienne ou la musique par exemple),  La plasticité cérébrale, on l’a vu avec l’exemple des tâches manuelles, est possible tout au long de la vie, mais elle est largement plus faible que chez l’enfant et le jeune adulte.

*

Nda : Afin de rendre cette notion de plasticité cérébrale plus visuelle, je vous propose de regarder cette vidéo de Céline Alvarez , « La plasticité cérébrale chez l’enfant » :

*

Image de prévisualisation YouTube

*

Autre passage intéressant qui concerne plus particulièrement la sensorialité (et notamment la proprioception, même si elle n’est pas clairement nommée), où l’on voit bien que la différence qui apparaît dans le cerveau n’est que le résultat d’un apprentissage :

*

plasticité cérébrale et singe

*

*

 

L’apprentissage de tâches manuelles : un exemple de plasticité cérébrale

Une expérience a été réalisée dans les années 1990 illustrant l’existence de la plasticité cérébrale, en prenant l’exemple d’exercices manuels, qui font intervenir le sens du toucher. Les doigts sont connectés au cerveau par des nerfs. Ces nerfs transmettent les informations sensorielles détectées par les doigts au cerveau ainsi que les ordres de mouvement du cerveau aux doigts. La région cérébrale impliquée dans la perception consciente du toucher est le cortex cérébral somatosensoriel. Il est subdivisé en sous-régions, chacune étant associée à un doigt : on parle de carte sensorielle. En quoi consiste cette carte ? Lorsqu’un doigt touche quelque chose, seulement une partie des neurones du cortex cérébral somatosensoriel « s’activent », les autres restant au repos. Chaque doigt « active » des zones distinctes du cortex cérébral somatosensoriel.

La question était : est-ce que la carte sensorielle est figée au cours de la vie, ou est-ce qu’elle s’adapte à notre usage de nos doigts ? Des électrodes ont été placées dans le cortex cérébral somatosensoriel de singes adultes afin de mesurer l’activité de différentes sous-régions de ce cortex. Ces électrodes permettent d’identifier les zones qui « s’activent » lorsqu’un doigt sent quelque chose. Les chercheurs ont tout d’abord précisé la carte sensorielle au début de cette expérience, quelle sous-région s’active lorsque le doigt « 1 » est utilisé par l’animal, de même pour les doigts « 2 », « 3 », « 4 » et « 5 ».

Le singe a ensuite dû faire chaque jour des exercices sollicitant principalement les doigts « 2 » et « 3 », parfois le « 4 ». Au bout de trois mois d’exercices, la carte sensorielle s’en retrouvait modifiée : l’étendue des sous-régions associées aux doigts « 1 » et « 5 » était réduite à la faveur de celle des sous-régions associées aux doigts « 2 » et « 3 » (celle de la sous-région associée au doigt « 4 » n’avait pas bougé). Cela signifie que davantage de neurones répondaient aux doigts « 2 » et « 3 » après cette période d’exercices, ce qui permettait à l’animal d’avoir une meilleure sensibilité pour ces doigts.

On pourrait faire le parallèle avec l’apprentissage d’un instrument de musique comme le violon ou du travail d’un artisan : notre cerveau s’adapte aux tâches qui sont répétées. On peut obtenir des résultats similaires pour d’autres sens. Par exemple, la carte sensorielle du cortex cérébral auditif (chaque sous-région répond à une fréquence sonore) est modifiée dans un environnement sans sons (surdité profonde) ou si des fréquences sont entendues plus fréquemment que d’autres (comme c’est le cas en industrie ou dans le bâtiment, avec certains sons de forte intensité répétés tout au long de la journée).

*

*

L’article dans son intégralité : La plasticité cérébrale au cœur de l’apprentissage

**

*****

*

On le voit donc, le cerveau se modifie en permanence, se sculpte sous l’effet de l’apprentissage et par conséquent un cerveau différent n’implique pas forcément un trouble neurologique ou neuro-développemental, mais peut simplement être le reflet du niveau d’expertise d’une compétence. C’est l’idée que soutiennent deux chercheurs dans une publication récente de la revue Brain Sciences,« Is Dyslexia a Brain Disorder ?« , où ils s’attaquent au « dogme » de l’origine neuro développementale de la dyslexie et suggère que celle-ci est plutôt le résultat de différences interindividuelles. En voici quelques extraits traduits :

*

Le résumé :

*

La «dyslexie développementale» est souvent considéré comme un trouble neuro développemental. Ce terme implique que le développement du cerveau est censé être perturbé, ce qui entraîne un cerveau anormal et dysfonctionnel. Nous contestons ce point de vue en soulignant qu’il n’y a aucune évidence d’anomalie neurologique dans la grande majorité des cas de difficultés de lecture des mots. Les preuves pertinentes disponibles provenant des études de neuro-imagerie sont presque entièrement des études corrélationnelles et de différences de groupe. Cependant, les différences dans les cerveaux existent certainement chaque fois que des différences de comportement existent, y compris des différences dans la capacité et la performance. Par conséquent, les découvertes de différences cérébrales ne constituent pas une preuve d’anomalie ; elles documentent plutôt simplement le substrat neuronal des différences de comportement. Nous suggérons que la dyslexie devrait plutôt être considérée comme l’une des nombreuses expressions des différences individuelles ordinaires omniprésentes dans les résultats normaux du développement. Ainsi, des termes tels que «dysfonctionnel» ou «anormal» ne sont pas justifiés lorsqu’on se réfère au cerveau des personnes dyslexiques.

*

D’autres extraits :

*

*d

Il devient évident de dire que les différences dans l’exécution d’une tâche, les différences de capacités, de compétences ou d’habilités, doivent nécessairement être à l’origine de différences dans le cerveau (ou les cerveaux) qui effectue les tâches, que ce soit chez une personne (à travers le temps) ou entre plusieurs personnes. Tout simplement, il n’y a pas d’autre cause possible pour ces différences : si deux personnes atteignent des niveaux de performance différents dans une tâche, cela implique directement et littéralement que les cerveaux des deux personnes doivent être différents exactement de la bonne manière et dans la mesure de la différence de performance observée. C’est-à-dire que si deux personnes sont différemment efficientes  dans l’acquisition d’une compétence, cela signifie que leurs cerveaux diffèrent de telle manière que l’un des cerveaux est plus efficace que l’autre pour se modifier afin de s’adapter à la compétence par l’entraînement. Si une personne apprend une tâche très facilement, cela signifie que la manière dont son cerveau s’est modifié au moment de l’apprentissage est telle que mener à bien cette tâche particulière a des effets importants et durables qui facilitent le traitement, lors de rencontres ultérieures, avec la même tâche spécifique. En revanche, si une personne apprend une tâche avec difficulté ou pas du tout, cela signifie que la manière dont son cerveau s’est structuré est telle que les tentatives d’accomplir la tâche n’ont pas rencontré un succès similaire, mais aboutissent à un bénéfice relativement faible (ou aucun) pour de futures rencontres.

*

*

En ce sens,  constater simplement qu’il y a des différences entre les cerveaux de ceux qui lisent bien et ceux qui ne lisent pas est non pas simplement banal, ce n’est pas simplement attendu ; mais c’est même, a priori, absolument certain. En fait, si aucune différence n’était trouvée, cela signifierait que nos méthodes ne sont pas assez bonnes, ou que nous ne regardons pas le cerveau de la bonne façon, ou que notre technologie n’est pas encore suffisamment développée pour détecter les différences (cf. . [65]). Par conséquent, il n’y a rien à célébrer quand des différences de cerveau sont trouvées. [...] Trouver des différences dans les cerveaux implique simplement que notre technologie actuelle est suffisamment avancée pour commencer à disséquer les différences structurelles et fonctionnelles systématiques entre les cerveaux, qui les rendent différemment aptes à apprendre à lire (ou à faire autre chose).

*

*

Par conséquent, il doit y avoir des différences entre les cerveaux des personnes dyslexiques et ceux qui n’ont aucune difficulté à apprendre à lire. […] Des études comparant des groupes de personnes ayant des compétences en lecture différentes l’ont confirmé (voir les commentaires dans [43,44,47 48,51,58,66]). Des études comparant des groupes de personnes différant par d’autres types de compétences l’ont également confirmé, y compris, par exemple, des pianistes [67], des apprenants en langues [68,69] et des chauffeurs de taxi [70]. Il est inutile d’énumérer plus de comparaisons parce que les différences de cerveau doivent nécessairement exister chaque fois qu’il existe des différences de compétences.
Il n’est pas nécessaire que les différences soient les mêmes pour chaque personne dans un groupe donné, car il y a aussi des différences dans les cerveaux individuels au sein de chaque groupe et, selon toute vraisemblance, de nombreuses façons d’atteindre chaque résultat de performance. Autrement dit, il est possible que différentes configurations cérébrales aboutissent à une performance ou à une capacité similaire (ou médiocre) dans un domaine.

*

*

Ainsi, nous soutenons que les résultats de la neuro-imagerie sont souvent mal interprétés et les fréquentes affirmations selon lesquelles les résultats ont démontré des anomalies sont totalement injustifiées et, par conséquent, incorrectes.
Pour montrer que le développement neuronal a été perturbé, autorisant l’utilisation du terme «trouble neuro développemental», il faut aller au-delà de l’existence de simples différences entre les plus performants et les moins performants (une constatation descriptive). Il faut démontrer que quelque chose dans le développement du cerveau n’est pas ce qu’il devrait être (une déclaration normative), dans un sens bien défini et indépendant ; et il faut aussi démontrer que ce qui ne va pas est très fortement lié aux faiblesses ou échecs comportementaux observés.[...]

*

C’est-à-dire qu’il est très improbable de démontrer un dysfonctionnement cérébral franc dans la dyslexie parce que la majorité des personnes ayant des difficultés à apprendre à lire sont en fait parfaitement normales et n’ont pas d’autres difficultés majeures au-delà de la langue écrite. Ils parlent bien, ils marchent bien, ils socialisent bien, ils travaillent, ont des familles et sont de bons membres de notre société. Cela contraste fortement avec les troubles neuro développementaux francs, tels que le syndrome d’alcoolisme fœtal, où la fonction humaine normale peut être substantiellement et visiblement compromise, limitant les perspectives, par exemple, dans les interactions sociales, de manière permanente dans tous les  contextes et situations. En revanche, la seule «maladie» des dyslexiques concerne leur réponse à une invention humaine : ils ont du mal à apprendre le code artificiel du langage écrit, qui (malheureusement pour eux) a fini par occuper une place prépondérante dans la société moderne. [...] Dire que les dyslexiques ont un trouble neurodéveloppemental et les diagnostiquer avec un développement neuronal perturbé, revient à attribuer un désordre neuro développemental à tout groupe qui exécute n’importe quelle compétence en-dessous d’un seuil arbitraire. [...]

Nous estimons qu’il est temps de remplacer l’attente d’une déficience cérébrale par une appréciation de la variabilité individuelle du développement neural normal et ses conséquences multi-facettes dans les domaines de compétences. [...]

Nous ne pouvons pas prouver que la dyslexie n’est pas un trouble neuro développemental, et ce n’est pas ce que nous avons essayé de faire dans cette contribution. Au lieu de cela, nous avons expliqué pourquoi aucun des types de preuves disponibles n’est pertinent pour conclure si la dyslexie est un trouble neuro développemental ou non, et qu’il est au mieux prématuré d’avoir implicitement décidé que c’est le cas.[...]

Par conséquent, nous croyons que le domaine [Nda : de la recherche sur la dyslexie] a été trop hâtif pour adopter une position qui n’est pas étayée par des preuves.

*

Vous ne serez pas surpris, j’adore  cette publication qui  laisse la porte ouverte à toutes les autres hypothèses, dont l’origine proprioceptive de la dyslexie !  :)

*

Pour la lire dans son intégralité (en anglais), clic sur l’image :

*

Brain sciences

*

Note : La première image, représentant les aires activées lors de la lecture chez le dyslexique et le lecteur normal, provient de l’article : L’imagerie du cerveau dévoile les secrets de la dyslexie

*

 

 

 

*

 

Lien entre troubles des apprentissages et dysproprioception

*

colloque

*

Je vous propose de visionner la vidéo où le Dr Quercia (INSERM U1093) a présenté le lien entre dysproprioception et troubles des apprentissages, à l’occasion du Colloque international SED.

Cette conférence de 15 minutes a été filmée en trois parties sur un téléphone portable et publiée sur Facebook, il vous faudra donc un compte sur ce réseau social pour les visionner (Clic sur les images) :

 

*

conférence quercia 1

*

conférence quercia 2

*

conférence quercia 3

*

Pour finir, je vous propose de visionner la petite vidéo qui n’a pas fonctionné durant la conférence, en cliquant sur l’image :

*

conférence quercia  4

 

 

 

 

 

 

 

Recherche : appel à participation d’enfants dyslexiques

*

Inserm bourgogne

*

Je relaie cet appel à la participation d’enfants dyslexiques pour une étude sur la dyslexie et la proprioception réalisée par Julie Laprevotte, doctorante du Laboratoire INSERM U1093 de l’ Université de Bourgogne.

Son travail de recherche s’inscrit dans le domaine des neurosciences. Le 1er axe consiste en l’étude des caractéristiques de la proprioception chez l’enfant dyslexique ainsi que de la relation entre les troubles sensori-moteur et cognitifs.

Les enfants auront des exercices moteurs simples à réaliser.

Attention ! Les enfants ne doivent pas avoir un suivi SDP en route.

Pour connaître les détails de cet appel à participation, clic sur l’image :

*

2tude julie laprevotte

*

La dyspraxie et les troubles sensoriels

*

dyspra quoi

*

Alors que je me désespère régulièrement de ne pas trouver d’allusion à la proprioception dans les publications, vidéos, etc. des divers spécialistes français de la dyspraxie, je viens enfin de trouver une référence à celle-ci dans un dossier consacré à la dyspraxie d’une association Suisse : Dyspra’quoi ? :) .

Je vais partager un extrait de ce dossier  (p12-13) :

*

La dyspraxie et les troubles sensoriels

*

Dans la majorité des cas, les enfants dyspraxiques souffrent d’un déficit au niveau sensoriel.
De façon très schématique, la première charnière essentielle à l’action permet aux informations sensorielles (provenant de nos muscles, de notre peau, de nos yeux, nos oreilles, etc) d’être acheminées vers le système nerveux central, notre cerveau. Ces informations sont reçues, elles sont filtrées pour que le cerveau ne tienne compte que des plus pertinentes; une première interprétation est effectuée, cette fonction se nomme l’intégration neuro-sensorielle.
Puis se situe, dans un niveau plus complexe, la deuxième charnière où le cerveau organise et planifie son action, là on entre dans le domaine de la praxie.
La bonne circulation et l’interprétation des informations sensorielles sont une base essentielle pour la construction du développement moteur de l’enfant.
*
*
informations sensorielle dyspraxie
*
Le système vestibulaire
*
Les récepteurs de ce système sont situés dans l’oreille interne et permettent de détecter :
l’effet de la gravité;
les mouvements et la position de la tête dans l’espace.
*
Les fonctions du système vestibulaire
*
Perception de l’orientation spatiale :
Haut, bas, avant, arrière, côté, position du corps mais surtout de la tête;
Contrôle oculomoteur :
Un réflexe aide à stabiliser les yeux à l’horizontal;
Contrôle postural:
Le système vestibulaire agit sur le tonus, l’équilibre, la posture.
*
Le système proprioceptif
*
Ce système est détecté par les récepteurs mécaniques de la peau, des muscles, des tendons, des articulations.
Les récepteurs renseignent :
sur la statique, l’équilibre ;
les déplacements du corps dans l’espace.
*
Les fonctions du système proprioceptif
*
Perception des mouvements des articulations et de la position du corps ;
Coordination musculaire :
Il permet de rythmer le geste et de le doser ;
Construction du schéma corporel :

Il apporte une perception des limites corporelles

*

Le système tactile
*
C’est le sens qui permet le contact direct avec le monde extérieur.
On distingue deux systèmes :
-Le toucher grossier: renseigne sur la douleur, la température, les sensations agréables/désagréables;
-Le toucher fin : transmet les informations sur la localisation et la durée de la stimulation tactile, la grandeur, la forme et la texture d’un objet.
*
Les fonctions du système tactile
*
Source primaire d’informations ;
Il apporte une conscience du corps;
Participe au développement des segments comme outils d’exploration :
Pour la préhension et la manipulation.
*
L’enfant dyspraxique peut donc par la déficience d’un de ses systèmes compromettre la qualité des informations sensorielles transmises vers le cerveau et donc générer une action peu optimale.
*
Les aspects de planification et d’organisation au niveau du cerveau étant déficitaire chez l’enfant, il n’est donc pas si difficile que cela d’imaginer ce contre quoi il doit lutter, compenser, pour produire une réponse adaptée à l’environnement.
*
Voilà qui fait vraiment plaisir à lire ! :)
Le dossier sur la dyspraxie, très complet, dans son intégralité :
*
Note : Image et schéma issus du site Dyspra’quoi ?

Des yeux symétriques révèlent une dyslexie

*

Des yeux symétriques révèlent une dyslexie dans Dys oeil-domine-dominant-300x226

Asymétrie des tâches de Maxwell chez le normolecteur

*

Récemment, j’avais partagé une vidéo dans laquelle le Dr Quercia expliquait le lien entre une symétrie anormale des rétines et une dysproprioception, suite à la découverte de deux physiciens français (Ropars et Le Floch).

*

tache maxwell
Absence de cônes sensibles au bleu au centre de la fovéa, appelée tâche de Maxwell
*

Je vous propose une traduction d’un article de la revue « The Scientist », où John Stein, professeur émérite de physiologie à l’Université d’Oxford, qui porte la théorie magnocellulaire, émet un avis très enthousiaste sur cette découverte :

 

Les yeux des personnes qui lisent avec aisance ont des rétines asymétriques et transmettent également des informations visuelles au cerveau asymétriquement, selon un rapport publié aujourd’hui (18 octobre) dans Proceedings of the Royal Society B. A l’inverse, les yeux des personnes atteintes de dyslexie semblent être physiquement et fonctionnellement symétriques.

« C’est une étude vraiment intéressante », explique John Stein, professeur émérite de physiologie à l’Université d’Oxford, qui n’a pas participé à la recherche. « Cela ramène l’idée que la vision a quelque chose à voir avec la dyslexie », ajoute-t-il,  » qui tend à être ignorée de nos jours ».

La dyslexie, caractérisée par une difficulté à apprendre à lire, affecte environ entre 5% et 10% des personnes. Bien que les facteurs génétiques et environnementaux aient été liés à la maladie, les causes sous-jacentes en demeurent largement inconnues.

« Jusqu’aux années 1950, tout le monde pensait que la dyslexie était visuelle », explique Stein, mais depuis lors, l’accent a été mis sur les théories des déficits de traitement de l’information dans le cerveau. Par exemple, les scientifiques ont observé que la latéralisation du cerveau – la compartimentation asymétrique de certaines fonctions cérébrales vers les hémisphères gauche ou droit – est, en général, plus faible chez les personnes dyslexiques que chez celles qui ne le sont pas. C’est-à-dire que ces fonctions ont tendance à être réparties de façon plus égale entre les deux hémisphères.

Les chercheurs soupçonnent que la perception visuelle pourrait être parmi les fonctions du cerveau qui présentent une latéralisation. Parce que les images reçues de chaque œil diffèrent légèrement les unes des autres, mais doivent être perçues comme une seule, on pense que le développement neurologique du système visuel se traduira par un œil dominant qui est principalement utilisé pour la précision de la position, ce qui entraînera un traitement cérébral asymétrique.

Évaluer si l’asymétrie visuelle existe et, si oui, si elle est réduite chez les personnes atteintes de dyslexie n’est pas simple. «L’un des problèmes de la mesure de la dominance oculaire est qu’il y a tellement de tests différents, et ils donnent tous des résultats différents», explique Stein.

L’équipe de Ropars a évalué la dominance de l’œil chez 30 individus atteints de dyslexie et, contrairement au groupe non dyslexique, 27 n’avaient pas de dominance oculaire.

Une méthode courante est le test de trou dans la carte, où un observateur tient à bout de bras une carte avec un trou au milieu, se concentre sur un objet à travers le trou et tire ensuite la carte vers le visage pour déterminer quel œil regarde l’objet. Cependant, cette méthode et d’autres peuvent être confondues par des facteurs tels que la distance de l’objet et l’angle du regard de l’observateur.

Pour contourner ces problèmes, les physiciens Guy Ropars et Albert Le Floch de l’Université de Rennes en France ont développé une nouvelle approche. « Nous étions conscients des artefacts associés aux méthodes habituelles. . . là où les yeux restent ouverts, « Ropars écrit dans un courriel à The Scientist, » alors, nous avons proposé ‘la méthode de rémanence’ où les yeux restent fermés. « 

Dans la nouvelle méthode, les sujets regardent d’abord une image très contrastée, comme une fenêtre lumineuse, ferment les yeux pour voir l’image rémanente qui en résulte, puis couvrent leurs yeux fermés avec leurs mains, ce qui réduit l’image rémanente. Le fait de retirer les deux mains tout en gardant les yeux fermés rétablit la luminosité de l’image rémanente, mais en retirant alternativement une main puis l’autre, une différence de luminosité de l’image restituée rétablie peut devenir apparente. En effet, sur 30 individus non dyslexiques, 19 ont vu une image rémanente plus claire avec leur œil droit et 11 avec leur gauche.

« Ce [test] semble beaucoup plus objectif [que les méthodes précédentes], et je pense donc que c’est très excitant », explique Stein. « Potentiellement, c’est une très belle avancée. »

L’équipe de Ropars a également évalué la dominance oculaire chez 30 individus dyslexiques et, contrairement au groupe non-dyslexique, 27 n’avaient pas de dominance oculaire – leurs images rémanentes étaient également brillantes dans les deux yeux. « Je pense que c’est assez convaincant« , dit Stein.

Ropars et Le FLoch ont ensuite montré que ce manque de dominance oculaire était corrélé avec des différences physiques apparentes dans l’œil lui-même. Dans la fovéa – la partie de la rétine responsable de la plus haute acuité visuelle – se trouve un groupe central de cellules coniques rouges et vertes, dépourvues de cellules de cônes bleus. En regardant un écran blanc à travers un filtre bleu, il est possible pour une personne de voir cette zone sans bleu comme une région sombre, connue sous le nom de Maxwell centroid. Chez les personnes sans dominance oculaire, cette région sombre apparaissait circulaire lorsqu’on la regardait avec l’un ou l’autre des yeux, tandis que chez les participants avec un œil dominant, la région apparaissait circulaire avec l’œil dominant mais elliptique avec le plus faible.

Avec ces analyses des centroïdes de Maxwell, «nous avons identifié la signature biologique de l’asymétrie nécessaire entre les deux yeux d’un observateur normal», écrit Ropars. Cette signature fovéale associée à « l’absence correspondante de dominance de l’image secondaire peut conduire à de nouvelles stratégies de diagnostic de la dyslexie », ajoute-t-il.

On ne sait pas encore comment ce défaut d’asymétrie provoque des difficultés en lecture, mais Ropars et Le Floch soulignent que les personnes dyslexiques confondent souvent leur gauche et leur droite et font des erreurs d’image en miroir lors de la lecture des lettres, ce qui pourrait s’expliquer par le fait que les deux yeux et les deux côtés du cerveau traitent l’information de position exactement de la même manière.

La seule grande chose qui manque à l’étude, dit Stein, « est toute suggestion sur la raison pour laquelle ces différences émergent [pendant le développement]. » Pour l’instant, dit-il, cela reste un mystère.

*

*

L’article original : Symmetrical Eyes Indicate Dyslexia

 

Note : Les images sont extraites de la vidéo du Dr Quercia (Chercheur associé INSERM)Dyslexie, Vision et Proprioception 

Image de prévisualisation YouTube

 

12345

Thérapie Asie |
Themassagetube |
Hubert90 |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | Pharmanono
| Le blog de Jacques Le Houezec
| Sevragebenzo