Le sourire, l’émotion qui s’entend

*

Sourire-Ircam

*

L’importance de la proprioception, en ce qui concerne le mouvement, est aujourd’hui  largement admise (sauf dans l’univers de la dyspraxie en France ;) ), mais la recherche commence à démontrer que la proprioception joue des rôles plus subtils qui nous affectent de façon surprenante. Nous avons déjà vu que la proprioception semble jouer un rôle dans la perception des émotions, que ce soit les nôtres, ou la compréhension que nous avons de celles des autres au travers du système miroir.

Voici une nouvelle étude qui montre encore l’interconnexion des systèmes visuel, auditif et moteur. Nous sommes là au cœur de la boucle perception-action, et certainement au cœur du rôle du nerf Tri jumeaux. En effet, le nerf Trijumeau est ainsi appelé car il se compose de trois branches qui irradient la face et la bouche : deux branches sensitives (ophtalmique et maxillaire) et une branche sensitivomotrice (mandibulaire). Mais il possède également des ramifications avec les yeux (proprioception des muscles oculomoteurs) et les oreilles (tenseur du tympan). Au niveau du cerveau, des neurones dits multisensoriels traitent à la fois les informations du champ auditif, visuel et proprioceptif. De ce fait, le nerf Trijumeau met en lien la bouche, les yeux et les oreilles créant une même unité sensorielle : parler, voir et entendre sont liés.

*

Je vous propose donc un extrait de cet article de Sciences et Avenir :

*

« Un sourire, cela s’entend. » Ce poncif du démarchage téléphonique n’a en fait pas souvent été étudié scientifiquement, les émotions étant surtout scrutées par le biais des expressions du visage et des réactions faciales. Or, deux chercheurs de l’Institut de recherche et coordination acoustique musique (Ircam) et du CNRS viennent de montrer, dans un article publié fin juillet 2018 dans Current Biology, qu’il existe un signal acoustique propre au sourire, au point qu’un auditeur peut y réagir inconsciemment, sans avoir accès aux émotions faciales correspondantes.

[...]

Les chercheurs ont fait écouter ces voix à trente-cinq personnes volontaires mais ignorant, bien sûr, que l’étude portait sur le sourire. Croyant participer à une expérience en électromyographie (étude des muscles et des nerfs), ils ont été équipés de capteurs sur les zygomatiques et le muscle corrugateur du sourcil (celui qui permet de froncer les sourcils). L’idée étant de pouvoir capter même d’infimes mouvements musculaires, imperceptibles à l’œil nu ou pour une caméra. « En plus, du maquillage ou de la barbe pouvait parasiter une captation visuelle ». Il a ensuite été demandé aux participants de juger positivement ou négativement les sons qu’ils entendaient et de dire si les phrases étaient prononcées avec ou sans sourire.

Au final, 63% des participants ont donné un jugement positif aux phrases avec « effet sourire » mais les chercheurs se sont aussi aperçus que, pendant l’écoute, leurs muscles suivaient le mouvement de l’effet algorithmique appliqué aux voix, par une sorte d’imitation. Ils sourient, ou cessent de sourire, en même temps que la voix entendu

[...]

D’un point de vue plus fondamental, elle ouvre des pistes sur les aspects inconscients du mécanisme du sourire et sur la combinaison entre signaux audios et visuels.

*

Voir l’intégralité de l’article sur le site de Sciences et Avenir : Le sourire, l’émotion qui s’entend

*

******

 

L’article original, en anglais, dans la revue Current Biology est  très intéressant, il fait directement le lien entre cette étude et la boucle perception-action. Je vous en ai traduit quelques passages, dans la mesure de ma compréhension de celui-ci. N’hésitez pas à aller lire l’article original : Auditory smiles trigger unconscious facial imitation

*

Arias.F1

*

Les sourires, produits par la contraction bilatérale des principaux muscles zygomatiques, sont l’une des expressions les plus puissantes d’affect positif et d’affiliation, et l’une des premières à se développer [1]. La boucle perception-action responsable de l’imitation rapide et spontanée d’un sourire est considérée comme une composante essentielle de la cognition sociale [2]. Chez l’homme, l’interaction sociale est extrêmement vocale et les indices visuels d’un visage souriant coexistent avec des changements articulatoires audibles sur la voix parlée [3]. Pourtant, on sait très peu de choses sur la manière dont ces «sourires auditifs» sont traités et réagissent. Nous avons développé une technique de transformation de la voix qui simule de manière sélective la signature spectrale de la phonation avec des lèvres étirées. même quand ils ne les ont pas détectés consciemment.

[...]

Le mimétisme, la prédisposition à refléter l’expression faciale d’un partenaire social et une base plausible pour la capacité humaine d’empathie, a été presque exclusivement étudiée en tant que processus visuo-moteur [2]. En utilisant le discours expressif, il était jusqu’à présent difficile d’exclure que de telles réactions, lorsqu’elles étaient observées, ne suivaient pas simplement l’appréciation par les participants de la signification sociale ou émotionnelle des stimuli [5]. Ici, nous avons introduit une technique sélective unique pour contrôler les signaux liés au sourire lors du discours et montrer que ces signaux déclenchent une réaction motrice même lorsque les sourires ne sont pas consciemment reconnus. Ces résultats étendent significativement les travaux antérieurs sur la vision montrant que la conscience d’un stimulus n’est pas nécessaire pour les réactions faciales [6] en établissant que, même lorsque les stimuli sont présentés consciemment et évalués explicitement, des aspects importants de la cognition sociale auditive peuvent encore opérer à un niveau inconscient.

[...]

Les processus sous-jacents à ces réactions inconscientes peuvent inclure des systèmes auto-articulatoires automatiques également actifs pour la compréhension lexicale [7], des systèmes prémoteurs se préparant à des gestes faciaux réactifs [...] Ces résultats montrent que la connaissance des sourires n’est pas aussi profondément enracinée dans le traitement visuel qu’on le croyait auparavant. Au-delà des sourires, ils soulignent que les caractéristiques oro-labiales des expressions faciales [10] jouent un rôle important et négligé dans la manière dont les émotions sont signalées vocalement.

 



La proprioception

*

Voici une petite vidéo dans laquelle Valérie Kempa, Ergothérapeute, nous parle des 7 sens et plus particulièrement du sens de la proprioception :

*

Image de prévisualisation YouTube

*




Archives pour la catégorie Proprioception

Vision aveugle ou inconsciente

*

colliculus

*

J’ai encore trouvé de petites pépites sur la vision inconsciente, qui nous font toujours mieux comprendre le rôle du système visuel accessoire (dans ce système, une partie des influx nerveux qui proviennent de la rétine se projette sur une petite région appelée colliculus).

*

colliculus voie accessoire

*

Je ne peux copier ici ces articles dans leur intégralité, pour des questions de droits d’auteur, je ne vous en donne que des extraits, mais je vous conseille vivement d’aller les lire dans leur intégralité :)   .

*

Rappelons que selon le Dr Quercia :

*

Même si elle reste largement ignorée des spécialistes de ce domaine, la posturologie fait partie de la neuro-ophtalmologie. Cette dernière, en pratique ophtalmologique courante, s’intéresse surtout à ce qui se passe entre la rétine et le lobe occipital. La posturologie est liée essentiellement à la voie optique accessoire dont nous sous-estimons volontiers l’importance. Elle se penche aussi sur tout ce qui se passe en aval du lobe occipital,  notamment au niveau des aires associatives. C’est là que s’initient probablement beaucoup de fonctions humaines supérieures et les perturbations cognitives du SDP n’ont certainement pas fini d’étonner.[...]

L’œil est un double capteur postural :

  • la rétine périphérique, grâce au système magnocellulaire sensible aux variations de contraste et aux mouvements, joue un rôle primordial dans les réactions posturales adaptatives. Les informations sont véhiculées au cortex par les voies optiques rétino-corticales mais c’est essentiellement le système optique accessoire qui gère les informations posturales provenant de la rétine. Un élément important de ce système est représenté par le colliculus supérieur qui est considéré comme un des centres de la régulation motrice œil-tête. Dissimulé à notre conscience par le flot d’images corticales, le système optique accessoire, fonctionne cependant en permanence.

 

Voici donc un extrait de l’article : De la vision aveugle… sur la route !

*

« Si l’on peut perdre la vision suite à une défaillance de la rétine, on peut aussi, plus rarement, devenir aveugle si notre cortex visuel est lésé des deux côtés.

C’est ce type de lésion qui provoque cet étrange phénomène qu’on appelle la vision aveugle (ou inconsciente). Alors que des personnes atteintes disent ne rien voir, elles peuvent néanmoins réussir à identifier correctement la position d’objets dans l’espace. Comment est-ce possible si elles disent ne rien voir ? En insistant : on leur demande simplement de « prendre une chance », de deviner, en pointant dans une direction où l’objet ou le point lumineux pourrait être. Et la plupart du temps, elles pointent dans la bonne direction. Béatrice de Gelder a même montré que le sujet peut éviter des objets en se déplaçant dans un couloir.

[...]

Ces résultats, pris dans leur ensemble, suggèrent que même chez les individus normaux, une partie de notre vision et de nos réponses émotionnelles à ce que nous voyons tous les jours, est inconsciente. Que nous percevons probablement sans nous en rendre compte une bonne partie des caractéristiques du monde qui nous entoure : des formes simples, des volumes, certains mouvements, certaines couleurs, des émotions exprimées subtilement par des visages…

Quelles seraient alors les régions du cerveau permettant de voir et de répondre à ce que l’on ne sait pas qu’on a vu ? Essentiellement des structures sous-corticales, comme le colliculus supérieur ou le pulvinar, qui envoient des projections directement à différentes aires corticales visuelles sans passer par le cortex visuel primaire (V1)

**

Et voici maintenant un extrait de l’ article : Vision aveugle

*

Il existe une façon de voir inconsciente, plus primitive, qui agit directement sur nos émotions.[...]

Lorsqu’on présente dans son champs visuel aveugle à une personne qui a une lésion du cortex cérébral visuel (aveugle donc) , lorsqu’on lui présente une photo d’un visage et que l’on mesure la dilatation des pupilles, la sueur, le changement du rythme cardiaque, on découvre que la personne répond sans le savoir aux émotions exprimées par le visage sur la photo, la joie ou la peur.
La personne ressent une émotion même si elle ne sait pas qu’elle la ressent.
Mais si l’on présente une photo d’un visage ayant une expression neutre, il n’y a pas de réactions.
Si on mesure la contraction des muscles du visage de la personne qui regarde la photo, on découvre qu’elle commence à mimer l’expression du visage, qu’il y a une ébauche de contraction des muscles impliqués dans le sourire si le visage a une expression joyeuse ou l’ébauche de contraction des muscles impliqués dans le froncement des sourcils si le visage exprime la peur, suggérant que les neurones miroirs de la personne en train de regarder sont en train de faire ressentir chez la personne qui ne sait pas qu’elle est en train de voir l’expression, l’émotion qu’elle voit sans le savoir sur le visage de l’autre.

Que signifie voir ?
Que signifie être conscient de ce que l’on voit ?

Lorsqu’on ne dit rien à la personne aveugle en lui projetant les images, elle réagit mais dit qu’elle n’a rien vu. Elle ne sait pas qu’elle réagit à quelque chose.
Si on lui demande qu’est ce que vous voyez, elle répond « rien ».
Mais si c’était une émotion, ce serait de la joie ou de la peur ? La personne répond alors le plus souvent correctement.
Si son attention est attirée  sur ce qu’elle voit sans le savoir, si on lui dit qu’elle peut simplement deviner, se jeter à l’eau, alors elle devient capable de dire avec des mots ce à quoi elle a réagit sans le savoir.
C’est comme si l’attention, dans la vision aveugle faisait émerger l’inconscient à la conscience incomplètement dans un entre deux ou se mêle la conscience et l’incertitude.
[...]

Mais quelle est cette région qui permet de voir et de répondre a ce que l’on ne sait pas qu’on a vu ?

Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle.
L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus.
Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activée par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
Mais l’imagerie cérébrale révèle que cette petite région et d’autres régions impliquées dans les émotions, les réponses motrices, les gestes, sont activées au cours la vision aveugle.
Et chez les personnes n’ayant pas de visions cérébrales, cette région est activée plus vite et pour des seuils d’activation plus faible que le cortex visuel. La vision pleinement consciente , celle qu’élabore le cortex visuel, est plus riche mais plus lente et nécessite un évènement visuel plus intense pour se déclencher que la vision aveugle.

 

*

Enfin, je vous propose aussi de visionner l’explication donnée sur la chaine de vulgarisation scientifique « E-penser » (j’ai sélectionné le passage, clic sur l’image) sur les capacités de perception des aveugles privés de cortex visuel primaire, où il aborde notamment le rôle du colliculus :

*

voie visuelle accessoire

*

*

 Lire aussi : Les différentes voies visuelles

Comment notre cerveau décide-t-il de fuir en cas de menace ?

*
*
colliculus
*
*
Je vous ai déjà parlé du colliculus supérieur, cette zone du cerveau qui est la « centrale » contrôlant la direction des saccades oculaires en fonction de la représentation que nous avons de l’espace environnant (nous avons d’ailleurs vu que le colliculus est impliqué dans le TDA/H).
*
Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle. L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus. Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activées par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
*
Le colliculus supérieur est une structure primaire d’analyse multi-sensorielle, c’est le lieu où se rencontrent les données sensitives de la proprioception des muscles oculomoteurs (information sur la position des globes oculaires dans leur orbite = localisation spatiale visuelle), les données sensorielles de la voie visuelle accessoire (rétine périphérique=perception du mouvement) et du cortex visuel (information visuelle), mais aussi des informations somato-sensorielles (toucher, proprioception) et auditives. Il y a dans le colliculus supérieur des cellules qui réagissent à la localisation spatiale, à l’audition, la vision, la proprioception et les neurophysiologistes ont démontré qu’une information sensorielle est mieux codée si le sujet la localise correctement dans l’espace : si les informations sensorielles sont congruentes, la réponse du neurone est supérieure.
 
J’ai donc trouvé très intéressant cet article de Libération, qui nous montre le rôle essentiel du colliculus dans la décision de prendre la fuite face à une menace (système très archaïque, il s’agit d’assurer la survie):
Lorsque nous sommes face à une situation menaçante, notre premier réflexe est d’évaluer le danger puis de décider ou non de prendre la fuite. Mais comment notre cerveau prend-il cette décision ? Comment arrive-t-il à évaluer le niveau d’une menace ? Une équipe de chercheurs anglais est parvenue à répondre à ces questions. Publiés dans la revue Nature, leurs résultats pourraient être très utiles pour comprendre certains troubles du comportement humain. [...]
*

Certaines personnes atteintes de stress post-traumatique ou souffrant de phobie sociale se sentent menacées en toutes circonstances, comme si leur cerveau n’était pas capable d’évaluer si une situation est vraiment dangereuse et de prendre la bonne décision quant à une fuite.[...]

Les chercheurs ont identifié deux régions, situées à la base du cerveau, ayant un rôle crucial dans la décision de prendre la fuite : le colliculus supérieur et la substance grise périaqueducale. Plus précisément, c’est la connexion entre ces deux régions qui va déclencher la fuite.

Explication : un évènement menaçant est capté par l’œil. Les neurones de la rétine transfèrent l’information aux neurones du colliculus supérieur. Ces neurones font alors appel à leur propre mémoire et analysent la situation. [...]

Si la situation est dangereuse, l’activité neuronale dans le colliculus supérieur augmente. Passé un certain seuil d’activité, la connexion avec la substance grise périaqueducale s’établit et le cerveau prend alors la décision de fuir. En revanche, si l’activité n’est pas assez importante dans le colliculus supérieur, la connexion ne se fait pas et il n’y a pas de fuite.

«On peut dire que les neurones du colliculus supérieur prennent la décision et que les neurones de la substance grise périaqueducale l’exécutent», résume Henrique Sequeira, professeur de neurosciences à l’université des sciences et technologies Lille 1.

*

L’article dans son intégralité :  Comment notre cerveau décide-t-il de fuir en cas de menace ?

*

Je trouve les résultats de cette étude très intéressants et parfaitement en phase avec les travaux du Dr Quercia (notamment avec le symptôme de l’inconfort dans la foule). Un nombre trop important d’erreurs causées par un dysfonctionnement proprioceptif est à l’origine d’une incohérence entre les différentes informations sensorielles qui parviennent au colliculus. Dès lors, celui-ci peut-il analyser sereinement la situation ?

En tout cas, cet article me parle, à moi qui suit dysperceptive dysproprioceptive, à moi qui doit lutter très fréquemment contre ce sentiment d’angoisse inexpliqué : dans la foule, quand il y a ne nombreuses voitures en mouvement autour de moi, face à une situation nouvelle dont je ne maîtrise pas tous les aspects, etc. (Même si je sais le cacher et donner l’illusion que tout va bien ;) )

 

Etre aveugle et percevoir le mouvement

 

 *

Etre aveugle et percevoir le mouvement dans Le coin du chercheur 7375575

*

Pour beaucoup de personnes, et même de nombreux ophtalmologistes, bien voir est avant tout un question d’acuité visuelle qui est l’expression de la qualité de la vision centrale. Mais percevoir correctement notre monde est un phénomène beaucoup plus complexe, qui implique un traitement correct par le cerveau de toutes les informations visuelles, dont celles qui proviennent de la rétine périphérique (système magnocellulaire sensible aux variations de contraste et aux mouvements)

J’ai trouvé très intéressant cet article de Sciences et Avenir qui décrit le cas d’une femme atteinte d’un cas exceptionnel et rare de cécité, et qui est capable de percevoir le mouvement (Nda : information proprioceptive provenant de la rétine périphérique). Si le cortex visuel primaire du cerveau (responsable de la vision) de cette femme a été endommagé par son AVC, celui du traitement du mouvement n’a pas été touché.

*

Extrait :

*

Milena Channing est une américaine de 43 ans devenue définitivement aveugle à la suite d’un accident vasculaire cérébral (AVC) en 2000 alors qu’elle n’avait que 29 ans.

Pourtant, très vite, elle se met à percevoir d’étranges apparitions. Malgré sa cécité avérée par les médecins, elle dit voir certaines choses comme la pluie qui tombe ou la fumée s’élevant au-dessus de sa tasse de café. Perturbée par ses « visions » elle retourne se faire examiner par les médecins.

Vous êtes aveugle, c’est tout

Après lui avoir fait passer un scanner, ses docteurs sont formels : l’AVC avait entièrement détruit son cortex visuel primaire, « la porte d’entrée » des informations visuelles dans le cerveau. Pour eux le verdict est sans appel:  »Vous êtes aveugle et c’est tout. »

Souffrait-elle donc d’hallucinations ? Elle n’y croit pas et va chercher d’autres avis. Après avoir vu plusieurs médecins, elle en trouve finalement un qui la croit. Le Dr Gordon Dutton, un ophtalmologiste exerçant à Glasgow (Ecosse) se souvient en effet de l’histoire d’un soldat de la 1re guerre mondiale qui, après avoir reçu une balle dans la tête, ne pouvait percevoir que les choses en mouvements. Il souffrait du phénomène de Riddoch.

À travers le mouvement, les formes lui apparaissent

Le phénomène de Riddoch est une affection souvent causée par des lésions dans le lobe occipital qui limite voire détruise la capacité de la victime à distinguer les objets. Il correspond à la capacité pour un sujet aveugle de percevoir un objet quand celui-ci est en mouvement, alors qu’il ne voit rien quand l’objet est stationnaire. Le regard est attiré par cette stimulation visuelle à laquelle il se fixe.

Les objets en mouvement ne sont pas perçus en détail ou comme ayant des couleurs. Mais leur forme générale peut être vue sous la forme d’une ombre ou de ses contours. C’est précisément ce qui est arrivé de Milena Channing. Et ce qui est présenté dans la vidéo ci-dessous :

*

Image de prévisualisation YouTube

*

L’article dans son intégralité :

Que voit cette femme aveugle qui perçoit le mouvement ?

*

Dans un autre article de Sciences et avenir, on en apprend plus sur le cas de Milena :

*

Extrait :

*

La lésion cérébrale touche les lobes occipitaux et affecte en particulière le cortex visuel primaire (ou aire V1), la région qui intègre l’information visuelle. Pour comprendre comment le cerveau de Milena s’est adapté à cette condition et comment il réagit aux stimuli visuels, les chercheurs ont soumis la patiente à plusieurs tests. Ils lui ont montré des objets et des échiquiers en mouvement et ils ont surveillé l’activité cérébrale grâce à l’imagerie par résonance magnétique fonctionnelle (fIRM).

De cette façon, ils ont observé que devant un objet en mouvement s’active, dans le cerveau de Milena, la région MT***, située dans le lobe temporal et dédiée à l’analyse de l’information sur le mouvement et la profondeur. Cette région lui permet également d’identifier la direction dans laquelle l’objet se déplace. Les chercheurs n’ont pas pu déterminer par quelle voie l’information arrive dans la région MT. Il s’agit peut-être des voies sous-corticales ou d’informations provenant de régions du cortex visuel qui ont été épargnées par l’AVC.

*

L’article dans son intégralité :

Le cas de la patiente aveugle qui voit des objets en mouvement

*

Dans la vidéo suivante (en anglais) qui expose le cas de Miléna, une chercheuse explique que son cas montre que la vision n’est pas une chose de type tout ou rien, et qu’il y a plusieurs aspects de la vision.

*

Image de prévisualisation YouTube

*

A l’inverse du cas de Miléna, il existe des personnes qui sont devenues incapables de percevoir le mouvement, comme on peut le voir dans cet article :

*

En 1983, Joseph Zihl et ses collaborateurs ont publié à Munich un article consacré à une femme de 43 ans qui était devenue totalement incapable de percevoir les mouvements à la suite d’un accident vasculaire cérébral qui avait lésé les deux côtés de son cortex extrastrié impliqué dans la reconnaissance du mouvement (aire V5 / Nda = aire MT). Cette patiente souffrait donc de l’étrange syndrome de la cécité au mouvement (ou akinétopsie) qui se manifeste par des « arrêts sur image » de plusieurs secondes tout au long desquels elle ne perçoit qu’une image immobile en perdant toute conscience visuelle des mouvements dans son environnement. Traverser une rue était par exemple fort périlleux pour cette patiente puisqu’une voiture qu’elle avait vue « arrêtée » à une grande distance de l’endroit où elle était pouvait se retrouver tout près d’elle après qu’elle eut commencé à traverser. Se verser un verre d’eau pouvait être tout aussi problématique puisqu’elle voyait l’eau qui coule comme gelée et qu’elle comprenait qu’elle en avait trop versée quand elle découvrait soudain l’eau répandue sur la table.

*

***

**********

**

Note 1 : Pour aller plus loin, vous pouvez lire cet article de Mireille Ranc, enseignante de SVT, Lycée E Quinet, Bourg en Bresse, 2006. Relecture François Vital-Durand, INSERM Lyon-Bron sur les : Différentes voies visuelles

Note *** : Voir aussi cet article où il est question de l’aire MT :

*

L’aire V5 (aussi appelée MT) semble contribuer de façon importante à la perception du mouvement. Cette région reçoit des projections des aires V2,V2 ainsi que la couche IV-B de l’aire visuelle primaire (V1). Il est important de noter que cette couche IV-B fait justement partie du canal magnocellulaire impliqué dans l’analyse du déplacement des objets.

 

Le cortex moteur aide à mieux entendre

*

Cerveau audition

*

La perception et l’action sont intimement liées chez l’humain. De manière constante et le plus souvent inconsciente, nous percevons pour agir et nous agissons pour percevoir. Lorsque nous saisissons un objet, nous ajustons la trajectoire de notre main en fonction de ce que nous voyons et nous déplaçons notre tête pour mieux voir ou entendre, par exemple. Ce couplage joue un rôle essentiel dans nos interactions avec le monde.

Dans ce couplage perception/action  la proprioception joue un rôle fondamental dans la manière dont notre cerveau gère les informations venant de nos autres sens. Le Pr JP Roll (CNRS) considère la proprioception comme « le  sens premier, celui qui donne du sens aux autres sens » :

 

« Comment pourrions-nous localiser une cible visuelle dans l’espace sans que le système nerveux soit précisément informé du lieu où se trouve le corps et notamment l’œil ? »  

*

En effet, la proprioception ne fonctionne pas indépendamment, mais en connexion avec les autres organes des sens et influence fortement leur travail en donnant constamment au cerveau l’indication de leur place respective dans le corps. Nos oreilles ne sont pas orientables, pour écouter en direction d’un son nous devons tourner la tête et les capteurs proprioceptifs des muscles du cou informent le cerveau de l’orientation de notre tête. De la même manière, le cerveau est informé de la direction de notre regard par le biais des muscles du cou, mais aussi grâce aux muscles oculomoteurs qui le renseignent sur la position des globes oculaires dans leur orbite. La proprioception permet de localiser les informations visuelles et auditives et joue ainsi un rôle important dans la manière dont le cerveau va traiter ces informations.

 

Nous savons aussi que notre cerveau est en permanence « bombardé » d’informations sensorielles : ouïe, vue, toucher, odorat, proprioception, douleur, chaleur, etc. Il ne peut toutes les traiter et seules arrivent à notre conscience celles qui sont utiles à ses objectifs. Il génère des prédictions sur le monde extérieur et sélectionne les informations sensorielles qu’il va utiliser, en fonction de ses simulations, ses expériences passées et de ses buts (Pr Alain Berthoz, Collège de France). La réalité de ce que nous percevons est sans cesse reconstruite par notre cerveau. Nous pouvons très bien ne pas « voir » des éléments flagrants qui sont pourtant sous nos yeux. A l’inverse, nous verrons mieux un objet si le cerveau peut  prédire son apparition.

*

Dans le même ordre d’idées, j’ai trouvé très intéressant cet article de l’INSERM :

 

Le cortex moteur aide à mieux entendre

 

Extrait :

 

Le cortex moteur aide le système auditif à mieux entendre. C’est ce qu’a constaté une équipe Inserm en étudiant l’impact des rythmes sur la perception auditive.

« Quand une personne est dans sa voiture et que le feu passe à l’orange, elle sait qu’elle doit s’arrêter et s’y prépare. Il y a une anticipation. La question que nous nous posions était de cet ordre-là : lorsqu’il s’agit d’audition, qu’est ce qui permet d’anticiper ce que l’on va entendre et d’en améliorer ainsi la perception ?« , explique Benjamin Morillon*, co-auteur de ces travaux avec Sylvain Baillet de l’Université McGill à Montréal. « Nous savions qu’un son rythmé est mieux intégré qu’un bruit désorganisé. Par ailleurs, nous savions également que le cortex moteur est impliqué dans la perception de tous les autres sens : la vue, le toucher, l’ouïe et l’odorat. Il permet de faire bouger les organes sensoriels pour améliorer la perception, notamment les yeux, la langue, les doigts, ou encore la truffe chez les animaux. Il permet également de capter une temporalité, c’est-à-dire qu’il est sensible à un signal récurrent ou prévisible, et permet donc d’anticiper un évènement à venir. Par exemple, on verra mieux un objet si on sait quand il va apparaître. Nous nous sommes donc demandés si le cortex moteur pouvait aussi jouer un rôle dans le lien entre son rythmique et qualité d’écoute. Peut-il capter une certaine temporalité des sons pour augmenter la perception auditive ? Autrement dit, est-ce que le rythme sonore, le flux d’une voix, pourrait être capté par le cortex moteur pour améliorer l’écoute ?« , raconte le chercheur.

Pour le vérifier les scientifiques ont exposé des volontaires à différentes fréquences sonores émises à intervalles réguliers et ont enregistré leur activité cérébrale par magnétoencéphalographie, une technique qui permet de mesurer le champ magnétique très faible produit par l’activité des neurones. Cela leur a permis de constater que lorsqu’un son est émis de façon rythmique, le cortex moteur s’active et des oscillations neurales se propagent vers le cortex auditif, augmentant la perception de ce son par rapport à un bruit de fond : « Nos résultats démontrent qu’il existe une forme de perception active en audition, avec un système moteur faisant partie intégrante du traitement auditif, clarifie Benjamin Morillon. La communication entre les cortex auditifs et moteurs est indispensable à une écoute de qualité« , précise-t-il. Cela signifie que lorsqu’une personne se concentre sur une voix, le cortex moteur en saisit le flux, le rythme, et que cela aide à comprendre ce qui est dit. Il capte un signal rythmique et prépare en quelque sorte le cortex auditif à entendre le son suivant. D’ailleurs ce coup de pouce du cortex moteur s’observe davantage en milieu sonore bruyant. « Quand le son est difficile à distinguer parmi d’autres, comme au cours d’une soirée animée, l’activation de cette région est importante pour aider le système auditif à entendre. A l’inverse, quand l’environnement est silencieux et que les sons sont bien distincts, cette activation ne se fait pas ou peu« , explique le chercheur. [...]

*

*

Le système moteur fait donc partie intégrante du traitement auditif, or si le cortex moteur fait bouger les organes sensoriels pour améliorer la perception, ce sont les capteurs proprioceptifs qui indiquent au cerveau où son situés nos organes sensoriels pour lui permettre de bien les positionner. En conclusion, l’hypothèse d’un dysfonctionnement proprioceptif qui interférerait dans le traitement des informations auditives (comme visuelles) chez le dyslexique est tout à fait compatible avec les résultats de ces recherches. ;)

*

*

Note : Voir aussi cet autre article de l’INSERM sur un thème proche: Corriger la dyslexie en rythme

Voici pourquoi les enfants sont increvables !

*

increvables

*

Nous l’avons vu récemment dans un article du site « Clinique du développement de l’enfant », les enfants bougent constamment pour stimuler leur proprioception et construire leur schéma corporel, jusqu’au alentours de 12 ans :

*

Comment les enfants développent-ils leur système proprioceptif ? C’est simple : en bougeant ! Voilà pourquoi les enfants BOUGENT TOUT LE TEMPS ! Et voilà pourquoi il est primordial de les laisser faire et même de les encourager à bouger !
*
En grimpant, soulevant, roulant, marchant, courant, tombant, sautant et à l’aide de plein d’autres mouvements, les enfants apprennent à évaluer l’espace qu’occupe leur corps entier, l’espace dévolu à chaque partie de leur corps, la distance entre ces parties ainsi que les notions de force et de vitesse. Ce faisant, ils entraînent leurs neurones à mesurer les risques de blessure et la plupart du temps… ils s’en tirent bien !
*
La nature étant bien faite, Mathieu Vidard nous explique, sur France Inter, pourquoi les enfants sont increvables :
*
*
Image de prévisualisation YouTube
*
*
Elle est pas belle la vie ? :D

Pour apprendre plus vite, augmentez votre vitesse de course

 *

courir

*

Je vous avais déjà parlé de plusieurs d’études montran les bienfaits des activités musculaires sur les apprentissages (grimper aux arbres, marcher, etc). En voici une autre récente, rapportée sur le site Doctissimo, qui montre une nouvelle fois que les tâches locomotrices ou toute activité stimulant le cervelet pourraient booster les fonctions d’apprentissages. Et qui dit cervelet et activité locomotrice, dit proprioception ;) .

*

Extrait de l’article :

 

Augmenter sa vitesse de course pourrait faciliter l’apprentissage, analyse une étude portugaise publiée ce mardi 17 avril dans la revue Nature Neuroscience.

Pouvons-nous améliorer le fonctionnement cognitif de notre cerveau en accélérant notre marche ou notre vitesse de course ? Des chercheurs portugais ont étudié ce phénomène sur des souris, avant de conclure qu’il y avait bien un lien de cause à effet entre l’augmentation de la plasticité cérébrale conduisant à un meilleur apprentissage et la vitesse d’une activité locomotrice. Si ces résultats restent à confirmer chez l’humain, les scientifiques ont constaté qu’il suffisait de faire courir plus rapidement les souris pour qu’elles apprennent mieux et plus vite.

L’étude met en évidence une région clé du cerveau, le cervelet, « dans laquelle les circuits neuronaux associés à l’apprentissage sont changés par l’apprentissage d’une tâche moteur ». Megan Carey, auteure de l’étude, explique : « Le cervelet est important pour apprendre des mouvements qualifiés. Il calibre des mouvements face à un environnement changeant pour les coordonner d’une façon très précise. » [...]

Après avoir expérimenté d’autres stimuli sensoriels sur les souris (son, vibration, etc.), les auteurs de l’étude affirment que l’amélioration de l’apprentissage est indépendante du système sensoriel.

Hormis la vitesse de course ou des tâches locomotrices, toute activité qui peut stimuler la région du cervelet, comme l’écoute de musique, pourrait booster les fonctions d’apprentissage, « en augmentant l’activité des fibres moussues, un type d’axones », conclut l’étude.

*

L’article dans son intégralité : Pour apprendre plus vite, augmentez votre vitesse de course

TDAH, colliculus supérieur et dysproprioception

*

Coluculus 2

*

colliculus

*

Je souhaite partager avec vous cette vidéo très intéressante sur les travaux du Pr Michael Reber, chercheur Inserm à l’Université de Strasbourg – CNRS sur le TDA/H, qui n’est pas sans rappeler quelques points de l’hypothèse de l’origine proprioceptive de certains troubles des apprentissages. ;)

Le Pr Reber explique que des études précédentes ont déjà démontré des perturbations importantes des saccades oculaires chez les TDA/H. Et les conclusions de cette nouvelle étude suggèrent que le TDAH pourrait être la conséquence d’un dysfonctionnement du colliculus supérieur, une région du cerveau qui intègre et analyse les informations sensorielles, et d’un déséquilibre en noradrénaline dans cette zone.  Dès lors,  si les informations sont défectueuses en début de chaîne d’analyse, la suite de la chaîne en sera perturbée.

*

Image de prévisualisation YouTube

*

A la suite de cet article « TDAH et recherche française » (1), le Pr Michael Reber a d’ailleurs laissé le commentaire suivant  :

*

Disons que le colliculus supérieur est une structure primaire d’analyse multi-sensorielle, recevant des informations visuelles, auditives (surtout chez l’homme) et somato-sensorielles (le toucher). Si des défauts d’analyse de ces données ont lieu déjà dans cette structure, il nous parait logique que les autres structures connectées (cortex préfrontal notamment) présentent elles aussi des défauts. [...] L’idée est que les patients avec TDAH n’ont plus la capacité de « filtrer » les stimulations sensorielles pertinentes -et en particulier visuelles et auditives- des informations non pertinentes (qu’on appellerait chez nous du « bruit »). »

*

Fait intéressant, le colliculus supérieur est un élément important du capteur oculaire postural et il est considéré comme un des centres de la régulation motrice œil-tête (2). Dans une de ses premières études datant de 2005, il y a 13 ans déjà, le Dr Quercia (Chercheur associé – Unité INSERM U1093 Cognition Action et Plasticité Sensorimotrice) écrivait :

*

« Le noyau trigéminal, élément dont l’origine phylogénétique est très ancienne, possède de nombreuses relations anatomiques avec des structures qui jouent un rôle clé dans le maintien de la posture et le contrôle des mouvements […] Les relations qui unissent le noyau trigéminal au colliculus supérieur sont probablement tout aussi essentielles. Le colliculus supérieur est en effet le lieu où se rencontrent les données sensitives de la proprioception des muscles oculomoteurs, les données sensorielles de la voie visuelle accessoire et du cortex visuel, mais aussi des informations somato-sensorielles et auditives. C’est la « centrale » qui contrôle la direction des saccades oculaires en fonction de la représentation de l’espace environnant « 

*

nerf trijumeau 1

*

Rappelons que le capteur rétino-trigéminé et ses dysfonctionnements sont tout l’objet des travaux des Drs Quercia et Marino. Le nerf Trijumeau est ainsi appelé car il se compose de trois branches qui irradient la face et la bouche : deux branches sensitives (ophtalmique et maxillaire) et une branche sensitivomotrice (mandibulaire). Mais il possède également des ramifications avec les yeux (proprioception des muscles oculomoteurs) et les oreilles (tenseur du tympan). De ce fait, le nerf Trijumeau va mettre en lien la bouche, les yeux et les oreilles créant une même unité sensorielle.

Dans la vidéo ci-dessous le Dr Quercia  nous parle de l’importance de la proprioception dans la localisation spatiale des informations sensorielles. Il explique, notamment, qu’il y a dans le colliculus supérieur des cellules qui réagissent à la localisation spatiale, à l’audition, la vision, la proprioception et que les neurophysiologistes ont démontré qu’une information sensorielle est mieux codée si le sujet la localise correctement dans l’espace : si les informations sensorielles sont congruentes, la réponse du neurone est supérieure (à 3’25 dans la vidéo).

*

Image de prévisualisation YouTube

*

En cas de dysproprioception, les informations sensorielles qui arrivent au cerveau ne sont pas congruentes. Dans l’hypothèse proprioceptive, un nombre trop important d’erreurs causées par un trouble de la proprioception serait à l’origine d’une incohérence entre les différentes informations sensorielles parvenant au colliculus. Dès lors, ces nombreux biais perceptifs affecteraient le traitement de ces informations et seraient responsables de l’apparition de troubles développementaux de l’attention visuelle et auditive. (Nda :  Je me demande si les hypopnées nocturnes liées à un dysfonctionnement proprioceptif de l’appareil manducateur ne peuvent pas avoir un impact sur la production des neurotransmetteurs ;) .  )

Dans l’hypothèse de Michael Reber, c’est une hypersensibilité du colliculus  supérieur, lié à une forte augmentation de noradrénaline, qui est à l’origine d’un traitement défectueux des informations sensorielles, soit de troubles de l’attention visuelle.

Alors, qui était là en premier : l’œuf ou  la poule ? Le dysfonctionnement de la proprioception ou le dysfonctionnement du colliculus ?

Affaire à suivre …  (D’autant plus que la réponse à donner, dans un des deux cas,  peut être très différente de l’approche médicamenteuse ;) ).

*

Notes  :

(1) : TDAH et recherche française, Article sur les travaux du Pr Michael Reber

(2) : Pourquoi l’ophtalmologiste est-il concerné par la posturologie ? (Dr P.Quercia sur le site du SNOF)

Proprioception Emotionnelle et Dépression

*

dépression

*

Depuis le temps que je m’intéresse à la proprioception, je pensais commencer à bien maîtriser ce sujet. Mais, force m’est de constater que je ne suis pas encore au bout de mes surprises et que le rôle de ce sens si particulier, si peu connu du grand public, ne cesse de me surprendre. En effet, j’ai découvert récemment le rôle majeur de la proprioception dans la perception des émotions, que ce soient les nôtres ou la compréhension que nous avons de celles des autres (qui fera l’objet d’un autre article). Et, notamment, le rôle qu’elle semble jouer dans une pathologie aussi sérieuse que la dépression.

Tout a commencé par la lecture d’articles concernant le botox, qui m’ont interpellée, comme celui-ci, du site Top-Santé (Nov 2014), dont voici un extrait :

*

L’article dans son intégralité : Anti-âge : le Botox rend-il dépressif ?

*

Proprioception Emotionnelle et Dépression dans Le coin du chercheur Anti-age-le-Botox-rend-il-depressif_width1024

*

*

En bloquant les muscles du visage, le Botox bloque aussi les signaux nerveux que l’on envoie à notre cerveau quand on sourit. Ce qui finit par nous rendre dépressif.

[...]

Injectée dans les rides du front ou celles du contour de l’œil, la toxine botulique, plus connue sous le nom de botox, paralyse en quelques heures tous les muscles faciaux. C’est ce qui donne l’effet « peau lisse » tant attendu. Mais la toxine ne se contente pas de paralyser les muscles. Elle bloque aussi la libération du neurotransmetteur qui signale à notre cerveau que nous sommes en train de sourire (et que, par conséquent, nous sommes heureux). Faute de recevoir ces signaux, notre cerveau nous plonge dans une sorte d’état dépressif.

Selon le Dr Lewis, qui a mené une étude sur 25 femmes ayant reçu des injections de Botox, les femmes qui ont traité leurs rides du lion (les deux rides verticales entre les sourcils) ont été beaucoup moins affectées par cette baisse de moral. « Au contraire, après traitement elles reconnaissent être de meilleure humeur car elles ne peuvent plus, physiquement, être renfrognées ».

En revanche, celles qui ont traité les rides d’amertume (les rides qui partent du coin de la bouche) ont été plus déprimées car elles ne pouvaient plus sourire. « Or, les expressions de notre visage affectent aussi notre moral. Nous sourions parce que nous sommes heureux mais c’est aussi le fait de sourire qui nous rend heureux » insiste le Dr Lewis.

*

A partir de ce moment, mon intérêt et ma curiosité étaient éveillés, car qui dit muscle dit proprioception ;) . J’ai donc commencé à chercher des articles pour voir si j’en trouvais qui reliaient la proprioception à ce phénomène, ce qui fut assez simple. Par exemple, dans cet article de 2014 de l’Agence  de presse Suisse LargeNetwork, dont je vous invite à lire l’extrait ci-dessous :

*

L’article dans son intégralité : Rides frontales, Botox et dépression

Soigner sa dépression chez le dermatologue? Ce n’est pas un scénario déjanté de Woody Allen mais un traitement préconisé par des psychiatres.

[...]

Lors du Congrès annuel 2014 de la Société suisse de psychiatrie et de psychothérapie qui se tenait à Bâle du 10 au 12 septembre, le docteur Axel Wollmer a surpris l’auditoire avec son exposé intitulé «Toxine botulique en guise de traitement contre la dépression». Sa nouvelle approche pour traiter la dépression légère et moyenne consiste en l’injection de toxine botulique dans la zone de la glabelle (région comprise entre les sourcils). L’étude qu’il a réalisée à Bâle montrerait qu’un traitement, avec une seule injection, peut entraîner rapidement «une amélioration significative et durable de l’humeur de patients souffrant de dépression chronique ou qui résistaient jusqu’à présent à tout traitement».

Comment expliquer cet effet antidépresseur? Pour le chercheur, il repose probablement sur le fait que «la paralysie des muscles de la mimique dans la zone frontale, lesquels expriment en cas de dépression avant tout des émotions négatives telles que l’anxiété ou de la tristesse, entraîne une interruption des afférences proprioceptives générées par ces émotions entre le visage et le cerveau». On parle de rétro-mécanisme facial. En d’autres termes, les émotions négatives génèrent des contractures de la musculature faciale. Musculature qui en informe le cerveau. Le Botox, en interrompant la transmission de ces messages, empêcherait ainsi l’entretien de l’humeur dépressive.

*

*

nerf trijumeau

*

Mais, le meilleur était à venir avec cette publication du Journal of Psychiatric Research 80(2016) 93-96, où les auteurs développent carrément le concept de Proprioception Emotionnelle et font le lien entre les informations proprioceptives véhiculées par la branche ophtalmique du nerf trijumeau et la dépression. Je vous ai traduit quelques passages intéressants, mais cette traduction a ses limites, je ne suis pas médecin ;) . (Clic sur l’image ci-dessous pour accéder à l’article complet en anglais)

*

journal psychiatrie

*

*

Résumé :

Nous développons le concept de Proprioception Emotionnelle, par lequel les muscles de l’expression faciale jouent un rôle central dans l’encodage et la transmission de l’information aux circuits émotionnels du cerveau, et nous décrivons sa neuroanatomie sous-jacente. Nous explorons le rôle de l’expression faciale à la fois dans le reflet de l’humeur dépressive et dans son influence sur celle-ci. Les circuits impliqués dans ce dernier effet sont une cible logique pour le traitement par toxine botulique, et nous passons en revue les preuves à l’appui de cette stratégie. Les données d’essais cliniques suggèrent que la toxine botulique est efficace dans le traitement de la dépression. Nous discutons des implications cliniques et théoriques de ces données. Cette nouvelle approche de traitement est juste un exemple de l’importance potentielle des nerfs crâniens dans le traitement de la dépression.

[...]

Proprioception émotionnelle

*
Les fibres nerveuses afférentes  semblent relayer l’information émotionnelle au cerveau de manière instantanée, signalant notre état émotionnel

Nous proposons l’hypothèse que le cerveau utilise l’expression des muscles faciaux pour fournir cette Proprioception Emotionnelle. Quand nous paralysons les fibres musculaires avec la toxine botulique, cela peut signaler aux branches finales du nerf trijumeau- peut-être celles impliquées dans le renseignement de la douleur, la position et la tension musculaire – un soulagement du stress physique, entraînant une diminution stress émotionnel.

[...]

Possibles circuits neuroanatomiques sous-jacents impliqués dans l’effet antidépresseur de la toxine botulique

Afin de comprendre le mécanisme de la Proprioception Emotionnelle qui peut être à l’œuvre dans cet effet antidépresseur, il est intéressant de noter que l’activité musculaire dans la région du front influence les fibres proprioceptives de la branche ophtalmique du nerf trijumeau. Ceci peut à son tour activer le PFC (Nda : Cortex Préfontal) ventromédian via le noyau trijumeau mésencéphalique et le locus ceruleus, ce dernier ayant des connexions directes avec l’amygdale et le PFC (Matsuo et al., 2015), structures critiques pour la régulation émotionnelle.

Nous émettons l’hypothèse qu’en injectant de la toxine botulique dans le front, de ce fait paralysant temporairement et réversiblement le muscle Corrugateur, nous influençons le signal proprioceptif envoyé le long de la branche ophtalmique du nerf trijumeau. Ainsi, au niveau neuroanatomique, la toxine botulique soulage littéralement la douleur et le stress des muscles Corrugateurs du front

[...]

En résumé, la Proprioception Emotionnelle est un concept utile pour comprendre l’influence que les muscles faciaux ont sur les centres émotionnels du cerveau.

*

Ceux qui s’intéressent au traitement proprioceptif et à la posturologie auront fait tout de suite le lien avec l’action des prismes posturaux qui agissent en modifiant les influx proprioceptifs des muscles oculo-moteurs de la branche ophtalmique du nerf trijumeau. La prise en charge du capteur rétino-trigéminé est d’ailleurs tout l’objet des travaux des Drs Quercia et Marino.

Dans les années 80, Martins da Cunha décrivait le Syndrôme de Déficience Posturale, et dans la clinique de celui-ci figurait la dépression (avec un accompagnement d’autres signes proprioceptifs, mais résistant aux traitements médicamenteux et disparaissant à la reprogrammation posturale). Les posturologues ont par la suite été fort critiqués  de vouloir prendre en charge de nombreuses pathologies diverses allant des troubles posturaux, à la dépression, en passant par la dyslexie, comme on peut le voir ici  : « Le fait que cette méthode soit ouvertement critiquée tient qu’elle parle ouvertement de guérison de la dyslexie (voire même d’autres choses) ».

Et voilà, les années passent, la recherche avance. Et de plus en plus d’études viennent confirmer les intuitions géniales de ce clinicien exceptionnel :) !

*********

A lire aussi :

Le Botox peut-il traiter la dépression? L’expression faciale peut vous guérir

Botulinum Toxin for Depression ? Emotional Proprioception

Voir aussi, dans un registre proche, la vidéo suivante (en anglais) :

Des chercheurs de Zurich montrent qu’ après 6 mois d’une légère paralysie faciale, provoquée par du botox, la manière dont le cerveau perçoit des stimuli sur la main est affectée (quand les posturologues disent que la proprioception fonctionne sur la base d’ une chaîne musculaire qui va de l’oeil jusqu’au pied).

Image de prévisualisation YouTube

 

123456

Thérapie Asie |
Themassagetube |
Hubert90 |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | Pharmanono
| Le blog de Jacques Le Houezec
| Sevragebenzo