Vision aveugle ou inconsciente

*

colliculus

*

J’ai encore trouvé de petites pépites sur la vision inconsciente, qui nous font toujours mieux comprendre le rôle du système visuel accessoire (dans ce système, une partie des influx nerveux qui proviennent de la rétine se projette sur une petite région appelée colliculus).

*

Capturesystème optique accesoire

*

Je ne peux copier ici ces articles dans leur intégralité, pour des questions de droits d’auteur, je ne vous en donne que des extraits, mais je vous conseille vivement d’aller les lire dans leur intégralité :)   .

*

Rappelons que selon le Dr Quercia :

*

Même si elle reste largement ignorée des spécialistes de ce domaine, la posturologie fait partie de la neuro-ophtalmologie. Cette dernière, en pratique ophtalmologique courante, s’intéresse surtout à ce qui se passe entre la rétine et le lobe occipital. La posturologie est liée essentiellement à la voie optique accessoire dont nous sous-estimons volontiers l’importance. Elle se penche aussi sur tout ce qui se passe en aval du lobe occipital,  notamment au niveau des aires associatives. C’est là que s’initient probablement beaucoup de fonctions humaines supérieures et les perturbations cognitives du SDP n’ont certainement pas fini d’étonner.[...]

L’œil est un double capteur postural :

  • la rétine périphérique, grâce au système magnocellulaire sensible aux variations de contraste et aux mouvements, joue un rôle primordial dans les réactions posturales adaptatives. Les informations sont véhiculées au cortex par les voies optiques rétino-corticales mais c’est essentiellement le système optique accessoire qui gère les informations posturales provenant de la rétine. Un élément important de ce système est représenté par le colliculus supérieur qui est considéré comme un des centres de la régulation motrice œil-tête. Dissimulé à notre conscience par le flot d’images corticales, le système optique accessoire, fonctionne cependant en permanence.

 

Voici donc un extrait de l’article : De la vision aveugle… sur la route !

*

« Si l’on peut perdre la vision suite à une défaillance de la rétine, on peut aussi, plus rarement, devenir aveugle si notre cortex visuel est lésé des deux côtés.

C’est ce type de lésion qui provoque cet étrange phénomène qu’on appelle la vision aveugle (ou inconsciente). Alors que des personnes atteintes disent ne rien voir, elles peuvent néanmoins réussir à identifier correctement la position d’objets dans l’espace. Comment est-ce possible si elles disent ne rien voir ? En insistant : on leur demande simplement de « prendre une chance », de deviner, en pointant dans une direction où l’objet ou le point lumineux pourrait être. Et la plupart du temps, elles pointent dans la bonne direction. Béatrice de Gelder a même montré que le sujet peut éviter des objets en se déplaçant dans un couloir.

[...]

Ces résultats, pris dans leur ensemble, suggèrent que même chez les individus normaux, une partie de notre vision et de nos réponses émotionnelles à ce que nous voyons tous les jours, est inconsciente. Que nous percevons probablement sans nous en rendre compte une bonne partie des caractéristiques du monde qui nous entoure : des formes simples, des volumes, certains mouvements, certaines couleurs, des émotions exprimées subtilement par des visages…

Quelles seraient alors les régions du cerveau permettant de voir et de répondre à ce que l’on ne sait pas qu’on a vu ? Essentiellement des structures sous-corticales, comme le colliculus supérieur ou le pulvinar, qui envoient des projections directement à différentes aires corticales visuelles sans passer par le cortex visuel primaire (V1)

**

Et voici maintenant un extrait de l’ article : Vision aveugle

*

Il existe une façon de voir inconsciente, plus primitive, qui agit directement sur nos émotions.[...]

Lorsqu’on présente dans son champs visuel aveugle à une personne qui a une lésion du cortex cérébral visuel (aveugle donc) , lorsqu’on lui présente une photo d’un visage et que l’on mesure la dilatation des pupilles, la sueur, le changement du rythme cardiaque, on découvre que la personne répond sans le savoir aux émotions exprimées par le visage sur la photo, la joie ou la peur.
La personne ressent une émotion même si elle ne sait pas qu’elle la ressent.
Mais si l’on présente une photo d’un visage ayant une expression neutre, il n’y a pas de réactions.
Si on mesure la contraction des muscles du visage de la personne qui regarde la photo, on découvre qu’elle commence à mimer l’expression du visage, qu’il y a une ébauche de contraction des muscles impliqués dans le sourire si le visage a une expression joyeuse ou l’ébauche de contraction des muscles impliqués dans le froncement des sourcils si le visage exprime la peur, suggérant que les neurones miroirs de la personne en train de regarder sont en train de faire ressentir chez la personne qui ne sait pas qu’elle est en train de voir l’expression, l’émotion qu’elle voit sans le savoir sur le visage de l’autre.

Que signifie voir ?
Que signifie être conscient de ce que l’on voit ?

Lorsqu’on ne dit rien à la personne aveugle en lui projetant les images, elle réagit mais dit qu’elle n’a rien vu. Elle ne sait pas qu’elle réagit à quelque chose.
Si on lui demande qu’est ce que vous voyez, elle répond « rien ».
Mais si c’était une émotion, ce serait de la joie ou de la peur ? La personne répond alors le plus souvent correctement.
Si son attention est attirée  sur ce qu’elle voit sans le savoir, si on lui dit qu’elle peut simplement deviner, se jeter à l’eau, alors elle devient capable de dire avec des mots ce à quoi elle a réagit sans le savoir.
C’est comme si l’attention, dans la vision aveugle faisait émerger l’inconscient à la conscience incomplètement dans un entre deux ou se mêle la conscience et l’incertitude.
[...]

Mais quelle est cette région qui permet de voir et de répondre a ce que l’on ne sait pas qu’on a vu ?

Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle.
L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus.
Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activée par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
Mais l’imagerie cérébrale révèle que cette petite région et d’autres régions impliquées dans les émotions, les réponses motrices, les gestes, sont activées au cours la vision aveugle.
Et chez les personnes n’ayant pas de visions cérébrales, cette région est activée plus vite et pour des seuils d’activation plus faible que le cortex visuel. La vision pleinement consciente , celle qu’élabore le cortex visuel, est plus riche mais plus lente et nécessite un évènement visuel plus intense pour se déclencher que la vision aveugle.

 

*

Enfin, je vous propose aussi de visionner l’explication donnée sur la chaine de vulgarisation scientifique « E-penser » (j’ai sélectionné le passage, clic sur l’image) sur les capacités de perception des aveugles privés de cortex visuel primaire, où il aborde notamment le rôle du colliculus :

*

voie visuelle accessoire



Comment notre cerveau décide-t-il de fuir en cas de menace ?

*
*
colliculus
*
*
Je vous ai déjà parlé du colliculus supérieur, cette zone du cerveau qui est la « centrale » contrôlant la direction des saccades oculaires en fonction de la représentation que nous avons de l’espace environnant (nous avons d’ailleurs vu que le colliculus est impliqué dans le TDA/H).
*
Les influx nerveux qui proviennent de la rétine suivent au moins deux trajets différents en parallèle. L’un de ces trajets gagne le cortex visuel du cerveau, celui qui est impliqué dans la vision consciente et l’autre gagne une petite région, une région plus ancienne en terme d’évolution du vivant appelée colliculus. Chez les poissons et les oiseaux, c’est la principale structure du cerveau qui est activées par la rétine. Chez les mammifères et les primates, c’est le cortex visuel qui est principalement impliqué dans la vision.
*
Le colliculus supérieur est une structure primaire d’analyse multi-sensorielle, c’est le lieu où se rencontrent les données sensitives de la proprioception des muscles oculomoteurs (information sur la position des globes oculaires dans leur orbite = localisation spatiale visuelle), les données sensorielles de la voie visuelle accessoire (rétine périphérique=perception du mouvement) et du cortex visuel (information visuelle), mais aussi des informations somato-sensorielles (toucher, proprioception) et auditives. Il y a dans le colliculus supérieur des cellules qui réagissent à la localisation spatiale, à l’audition, la vision, la proprioception et les neurophysiologistes ont démontré qu’une information sensorielle est mieux codée si le sujet la localise correctement dans l’espace : si les informations sensorielles sont congruentes, la réponse du neurone est supérieure.
 
J’ai donc trouvé très intéressant cet article de Libération, qui nous montre le rôle essentiel du colliculus dans la décision de prendre la fuite face à une menace (système très archaïque, il s’agit d’assurer la survie):
Lorsque nous sommes face à une situation menaçante, notre premier réflexe est d’évaluer le danger puis de décider ou non de prendre la fuite. Mais comment notre cerveau prend-il cette décision ? Comment arrive-t-il à évaluer le niveau d’une menace ? Une équipe de chercheurs anglais est parvenue à répondre à ces questions. Publiés dans la revue Nature, leurs résultats pourraient être très utiles pour comprendre certains troubles du comportement humain. [...]
*

Certaines personnes atteintes de stress post-traumatique ou souffrant de phobie sociale se sentent menacées en toutes circonstances, comme si leur cerveau n’était pas capable d’évaluer si une situation est vraiment dangereuse et de prendre la bonne décision quant à une fuite.[...]

Les chercheurs ont identifié deux régions, situées à la base du cerveau, ayant un rôle crucial dans la décision de prendre la fuite : le colliculus supérieur et la substance grise périaqueducale. Plus précisément, c’est la connexion entre ces deux régions qui va déclencher la fuite.

Explication : un évènement menaçant est capté par l’œil. Les neurones de la rétine transfèrent l’information aux neurones du colliculus supérieur. Ces neurones font alors appel à leur propre mémoire et analysent la situation. [...]

Si la situation est dangereuse, l’activité neuronale dans le colliculus supérieur augmente. Passé un certain seuil d’activité, la connexion avec la substance grise périaqueducale s’établit et le cerveau prend alors la décision de fuir. En revanche, si l’activité n’est pas assez importante dans le colliculus supérieur, la connexion ne se fait pas et il n’y a pas de fuite.

«On peut dire que les neurones du colliculus supérieur prennent la décision et que les neurones de la substance grise périaqueducale l’exécutent», résume Henrique Sequeira, professeur de neurosciences à l’université des sciences et technologies Lille 1.

*

L’article dans son intégralité :  Comment notre cerveau décide-t-il de fuir en cas de menace ?

*

Je trouve les résultats de cette étude très intéressants et parfaitement en phase avec les travaux du Dr Quercia (notamment avec le symptôme de l’inconfort dans la foule). Un nombre trop important d’erreurs causées par un dysfonctionnement proprioceptif est à l’origine d’une incohérence entre les différentes informations sensorielles qui parviennent au colliculus. Dès lors, celui-ci peut-il analyser sereinement la situation ?

En tout cas, cet article me parle, à moi qui suit dysperceptive dysproprioceptive, à moi qui doit lutter très fréquemment contre ce sentiment d’angoisse inexpliqué : dans la foule, quand il y a ne nombreuses voitures en mouvement autour de moi, face à une situation nouvelle dont je ne maîtrise pas tous les aspects, etc. (Même si je sais le cacher et donner l’illusion que tout va bien ;) )

 




Archives pour la catégorie Neurosciences

Le cortex moteur aide à mieux entendre

*

Cerveau audition

*

La perception et l’action sont intimement liées chez l’humain. De manière constante et le plus souvent inconsciente, nous percevons pour agir et nous agissons pour percevoir. Lorsque nous saisissons un objet, nous ajustons la trajectoire de notre main en fonction de ce que nous voyons et nous déplaçons notre tête pour mieux voir ou entendre, par exemple. Ce couplage joue un rôle essentiel dans nos interactions avec le monde.

Dans ce couplage perception/action  la proprioception joue un rôle fondamental dans la manière dont notre cerveau gère les informations venant de nos autres sens. Le Pr JP Roll (CNRS) considère la proprioception comme « le  sens premier, celui qui donne du sens aux autres sens » :

 

« Comment pourrions-nous localiser une cible visuelle dans l’espace sans que le système nerveux soit précisément informé du lieu où se trouve le corps et notamment l’œil ? »  

*

En effet, la proprioception ne fonctionne pas indépendamment, mais en connexion avec les autres organes des sens et influence fortement leur travail en donnant constamment au cerveau l’indication de leur place respective dans le corps. Nos oreilles ne sont pas orientables, pour écouter en direction d’un son nous devons tourner la tête et les capteurs proprioceptifs des muscles du cou informent le cerveau de l’orientation de notre tête. De la même manière, le cerveau est informé de la direction de notre regard par le biais des muscles du cou, mais aussi grâce aux muscles oculomoteurs qui le renseignent sur la position des globes oculaires dans leur orbite. La proprioception permet de localiser les informations visuelles et auditives et joue ainsi un rôle important dans la manière dont le cerveau va traiter ces informations.

 

Nous savons aussi que notre cerveau est en permanence « bombardé » d’informations sensorielles : ouïe, vue, toucher, odorat, proprioception, douleur, chaleur, etc. Il ne peut toutes les traiter et seules arrivent à notre conscience celles qui sont utiles à ses objectifs. Il génère des prédictions sur le monde extérieur et sélectionne les informations sensorielles qu’il va utiliser, en fonction de ses simulations, ses expériences passées et de ses buts (Pr Alain Berthoz, Collège de France). La réalité de ce que nous percevons est sans cesse reconstruite par notre cerveau. Nous pouvons très bien ne pas « voir » des éléments flagrants qui sont pourtant sous nos yeux. A l’inverse, nous verrons mieux un objet si le cerveau peut  prédire son apparition.

*

Dans le même ordre d’idées, j’ai trouvé très intéressant cet article de l’INSERM :

 

Le cortex moteur aide à mieux entendre

 

Extrait :

 

Le cortex moteur aide le système auditif à mieux entendre. C’est ce qu’a constaté une équipe Inserm en étudiant l’impact des rythmes sur la perception auditive.

« Quand une personne est dans sa voiture et que le feu passe à l’orange, elle sait qu’elle doit s’arrêter et s’y prépare. Il y a une anticipation. La question que nous nous posions était de cet ordre-là : lorsqu’il s’agit d’audition, qu’est ce qui permet d’anticiper ce que l’on va entendre et d’en améliorer ainsi la perception ?« , explique Benjamin Morillon*, co-auteur de ces travaux avec Sylvain Baillet de l’Université McGill à Montréal. « Nous savions qu’un son rythmé est mieux intégré qu’un bruit désorganisé. Par ailleurs, nous savions également que le cortex moteur est impliqué dans la perception de tous les autres sens : la vue, le toucher, l’ouïe et l’odorat. Il permet de faire bouger les organes sensoriels pour améliorer la perception, notamment les yeux, la langue, les doigts, ou encore la truffe chez les animaux. Il permet également de capter une temporalité, c’est-à-dire qu’il est sensible à un signal récurrent ou prévisible, et permet donc d’anticiper un évènement à venir. Par exemple, on verra mieux un objet si on sait quand il va apparaître. Nous nous sommes donc demandés si le cortex moteur pouvait aussi jouer un rôle dans le lien entre son rythmique et qualité d’écoute. Peut-il capter une certaine temporalité des sons pour augmenter la perception auditive ? Autrement dit, est-ce que le rythme sonore, le flux d’une voix, pourrait être capté par le cortex moteur pour améliorer l’écoute ?« , raconte le chercheur.

Pour le vérifier les scientifiques ont exposé des volontaires à différentes fréquences sonores émises à intervalles réguliers et ont enregistré leur activité cérébrale par magnétoencéphalographie, une technique qui permet de mesurer le champ magnétique très faible produit par l’activité des neurones. Cela leur a permis de constater que lorsqu’un son est émis de façon rythmique, le cortex moteur s’active et des oscillations neurales se propagent vers le cortex auditif, augmentant la perception de ce son par rapport à un bruit de fond : « Nos résultats démontrent qu’il existe une forme de perception active en audition, avec un système moteur faisant partie intégrante du traitement auditif, clarifie Benjamin Morillon. La communication entre les cortex auditifs et moteurs est indispensable à une écoute de qualité« , précise-t-il. Cela signifie que lorsqu’une personne se concentre sur une voix, le cortex moteur en saisit le flux, le rythme, et que cela aide à comprendre ce qui est dit. Il capte un signal rythmique et prépare en quelque sorte le cortex auditif à entendre le son suivant. D’ailleurs ce coup de pouce du cortex moteur s’observe davantage en milieu sonore bruyant. « Quand le son est difficile à distinguer parmi d’autres, comme au cours d’une soirée animée, l’activation de cette région est importante pour aider le système auditif à entendre. A l’inverse, quand l’environnement est silencieux et que les sons sont bien distincts, cette activation ne se fait pas ou peu« , explique le chercheur. [...]

*

*

Le système moteur fait donc partie intégrante du traitement auditif, or si le cortex moteur fait bouger les organes sensoriels pour améliorer la perception, ce sont les capteurs proprioceptifs qui indiquent au cerveau où son situés nos organes sensoriels pour lui permettre de bien les positionner. En conclusion, l’hypothèse d’un dysfonctionnement proprioceptif qui interférerait dans le traitement des informations auditives (comme visuelles) chez le dyslexique est tout à fait compatible avec les résultats de ces recherches. ;)

*

*

Note : Voir aussi cet autre article de l’INSERM sur un thème proche: Corriger la dyslexie en rythme

Lecture, cerveau et dyslexie

*

cerveau dyslexique

*

On l’a vu précédemment, le cerveau se modifie en permanence, se sculpte sous l’effet de l’apprentissage et par conséquent un cerveau différent n’implique pas forcément un trouble neurologique, mais peut simplement être le reflet du niveau d’expertise d’une compétence. C’est l’idée que soutiennent deux chercheurs dans une publication récente de la revue Brain Sciences Is Dyslexia a Brain Disorder ?« , où ils s’attaquent au « dogme » de l’origine neurologique de la dyslexie et suggère que celle-ci est plutôt le résultat de différences interindividuelles :

Cependant, les différences dans les cerveaux existent certainement chaque fois que des différences de comportement existent, y compris des différences dans la capacité et la performance. Par conséquent, les découvertes de différences cérébrales ne constituent pas une preuve d’anomalie ; elles documentent plutôt simplement le substrat neuronal des différences de comportement.

La conclusion de ces chercheurs est tout a fait en accord avec deux publications récentes, dont une  étude française rapportée dans un article de Sciences et Avenir, où des chercheurs  ont visualisé, pour la première fois, comment se forme la zone cérébrale dédiée à l’apprentissage de la lecture chez l’enfant. Ils ont montré que cette zone n’existe pas chez l’enfant pré-lecteur et apparaît petit à petit sous l’effet de l’apprentissage :

*

avant et après apprentissage

*

 

Extrait de l’article :

*

Une zone d’activité émerge peu à peu dans l’hémisphère gauche

*

Les chercheurs ont alors constaté que, chez les enfants, chaque catégorie d’image active, comme chez l’adulte, une zone spécialisée du cortex visuel. Sauf pour les mots. Au départ (grande section de maternelle) la « boîte aux lettres » (qui répond plus aux mots qu’aux images) n’apparaît pas chez les enfants. Elle peut commencer à s’activer dès fin novembre de l’année de CP pour certains. Pour les autres, elle émerge plus lentement, la réponse de cette région étant proportionnelle aux performances de lecture. Un an plus tard, une fois la lecture des mots familiers automatisée, la zone, bien en place, persiste dans l’hémisphère gauche. Les enfants savent lire, et ça se voit dans le cerveau ! 

*

A quoi servait donc cette région cérébrale avant d’être spécialisée dans la lecture? Les chercheurs sont retournés aux premiers IRMf pour le savoir. Ils ont alors découvert que la « boîte aux lettres » était « libre »avant l’apprentissage. En revanche — IRM f à l’appui —, son développement entraîne le blocage du développement de la zone liée à la réponse aux visages dans l’hémisphère gauche. « Nous apprenons donc à lire aux enfants à un moment de plasticité de cette région qui augmenterait sa réponse aux visages dans le milieu naturel », expliquent les auteurs. Autrement dit, les enfants pourraient développer davantage la reconnaissance des visages s’ils n’apprenaient pas à lire.

*

L’article dans son intégralité : Comment le cerveau apprend à lire

*

************

*

publi Clark

*

Dans une étude pécédente, d’autres chercheurs avaient réalisé des  IRM fonctionnelles à 27 enfants norvégiens de familles dyslexiques, avant que l’apprentissage de la lecture ne commence et jusqu’à après que la dyslexie ne soit diagnostiquée. Ils ont ainsi pu déterminer que les anomalies neuroanatomiques primaires qui précédaient la dyslexie n’étaient pas situées dans la zone de la lecture elle-même, mais plutôt dans des zones de niveau inférieur, responsables du traitement auditif et visuel et des fonctions exécutives de base. Les anomalies de la zone de  lecture elle-même n’ont été observées qu’à l’âge de 11 ans, après que les enfants aient appris à lire. Les résultats suggèrent que les anomalies dans la zone de lecture sont la conséquence d’ expériences de lecture différentes, plutôt que la dyslexie en soi, alors que les précurseurs neuroanatomiques se situent principalement dans les cortex sensoriels.

*

L’article en anglais :

Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11, Brain. 2014 Dec;137(Pt 12):3136-41

 

******

La première image, représentant les aires activées lors de la lecture chez le dyslexique et le lecteur normal, provient de l’article : L’imagerie du cerveau dévoile les secrets de la dyslexie

 

 

 

 

Proprioception Emotionnelle et Dépression

*

dépression

*

Depuis le temps que je m’intéresse à la proprioception, je pensais commencer à bien maîtriser ce sujet. Mais, force m’est de constater que je ne suis pas encore au bout de mes surprises et que le rôle de ce sens si particulier, si peu connu du grand public, ne cesse de me surprendre. En effet, j’ai découvert récemment le rôle majeur de la proprioception dans la perception des émotions, que ce soient les nôtres ou la compréhension que nous avons de celles des autres (qui fera l’objet d’un autre article). Et, notamment, le rôle qu’elle semble jouer dans une pathologie aussi sérieuse que la dépression.

Tout a commencé par la lecture d’articles concernant le botox, qui m’ont interpellée, comme celui-ci, du site Top-Santé (Nov 2014), dont voici un extrait :

*

L’article dans son intégralité : Anti-âge : le Botox rend-il dépressif ?

*

Proprioception Emotionnelle et Dépression dans Le coin du chercheur Anti-age-le-Botox-rend-il-depressif_width1024

*

*

En bloquant les muscles du visage, le Botox bloque aussi les signaux nerveux que l’on envoie à notre cerveau quand on sourit. Ce qui finit par nous rendre dépressif.

[...]

Injectée dans les rides du front ou celles du contour de l’œil, la toxine botulique, plus connue sous le nom de botox, paralyse en quelques heures tous les muscles faciaux. C’est ce qui donne l’effet « peau lisse » tant attendu. Mais la toxine ne se contente pas de paralyser les muscles. Elle bloque aussi la libération du neurotransmetteur qui signale à notre cerveau que nous sommes en train de sourire (et que, par conséquent, nous sommes heureux). Faute de recevoir ces signaux, notre cerveau nous plonge dans une sorte d’état dépressif.

Selon le Dr Lewis, qui a mené une étude sur 25 femmes ayant reçu des injections de Botox, les femmes qui ont traité leurs rides du lion (les deux rides verticales entre les sourcils) ont été beaucoup moins affectées par cette baisse de moral. « Au contraire, après traitement elles reconnaissent être de meilleure humeur car elles ne peuvent plus, physiquement, être renfrognées ».

En revanche, celles qui ont traité les rides d’amertume (les rides qui partent du coin de la bouche) ont été plus déprimées car elles ne pouvaient plus sourire. « Or, les expressions de notre visage affectent aussi notre moral. Nous sourions parce que nous sommes heureux mais c’est aussi le fait de sourire qui nous rend heureux » insiste le Dr Lewis.

*

A partir de ce moment, mon intérêt et ma curiosité étaient éveillés, car qui dit muscle dit proprioception ;) . J’ai donc commencé à chercher des articles pour voir si j’en trouvais qui reliaient la proprioception à ce phénomène, ce qui fut assez simple. Par exemple, dans cet article de 2014 de l’Agence  de presse Suisse LargeNetwork, dont je vous invite à lire l’extrait ci-dessous :

*

L’article dans son intégralité : Rides frontales, Botox et dépression

Soigner sa dépression chez le dermatologue? Ce n’est pas un scénario déjanté de Woody Allen mais un traitement préconisé par des psychiatres.

[...]

Lors du Congrès annuel 2014 de la Société suisse de psychiatrie et de psychothérapie qui se tenait à Bâle du 10 au 12 septembre, le docteur Axel Wollmer a surpris l’auditoire avec son exposé intitulé «Toxine botulique en guise de traitement contre la dépression». Sa nouvelle approche pour traiter la dépression légère et moyenne consiste en l’injection de toxine botulique dans la zone de la glabelle (région comprise entre les sourcils). L’étude qu’il a réalisée à Bâle montrerait qu’un traitement, avec une seule injection, peut entraîner rapidement «une amélioration significative et durable de l’humeur de patients souffrant de dépression chronique ou qui résistaient jusqu’à présent à tout traitement».

Comment expliquer cet effet antidépresseur? Pour le chercheur, il repose probablement sur le fait que «la paralysie des muscles de la mimique dans la zone frontale, lesquels expriment en cas de dépression avant tout des émotions négatives telles que l’anxiété ou de la tristesse, entraîne une interruption des afférences proprioceptives générées par ces émotions entre le visage et le cerveau». On parle de rétro-mécanisme facial. En d’autres termes, les émotions négatives génèrent des contractures de la musculature faciale. Musculature qui en informe le cerveau. Le Botox, en interrompant la transmission de ces messages, empêcherait ainsi l’entretien de l’humeur dépressive.

*

*

nerf trijumeau

*

Mais, le meilleur était à venir avec cette publication du Journal of Psychiatric Research 80(2016) 93-96, où les auteurs développent carrément le concept de Proprioception Emotionnelle et font le lien entre les informations proprioceptives véhiculées par la branche ophtalmique du nerf trijumeau et la dépression. Je vous ai traduit quelques passages intéressants, mais cette traduction a ses limites, je ne suis pas médecin ;) . (Clic sur l’image ci-dessous pour accéder à l’article complet en anglais)

*

journal psychiatrie

*

*

Résumé :

Nous développons le concept de Proprioception Emotionnelle, par lequel les muscles de l’expression faciale jouent un rôle central dans l’encodage et la transmission de l’information aux circuits émotionnels du cerveau, et nous décrivons sa neuroanatomie sous-jacente. Nous explorons le rôle de l’expression faciale à la fois dans le reflet de l’humeur dépressive et dans son influence sur celle-ci. Les circuits impliqués dans ce dernier effet sont une cible logique pour le traitement par toxine botulique, et nous passons en revue les preuves à l’appui de cette stratégie. Les données d’essais cliniques suggèrent que la toxine botulique est efficace dans le traitement de la dépression. Nous discutons des implications cliniques et théoriques de ces données. Cette nouvelle approche de traitement est juste un exemple de l’importance potentielle des nerfs crâniens dans le traitement de la dépression.

[...]

Proprioception émotionnelle

*
Les fibres nerveuses afférentes  semblent relayer l’information émotionnelle au cerveau de manière instantanée, signalant notre état émotionnel

Nous proposons l’hypothèse que le cerveau utilise l’expression des muscles faciaux pour fournir cette Proprioception Emotionnelle. Quand nous paralysons les fibres musculaires avec la toxine botulique, cela peut signaler aux branches finales du nerf trijumeau- peut-être celles impliquées dans le renseignement de la douleur, la position et la tension musculaire – un soulagement du stress physique, entraînant une diminution stress émotionnel.

[...]

Possibles circuits neuroanatomiques sous-jacents impliqués dans l’effet antidépresseur de la toxine botulique

Afin de comprendre le mécanisme de la Proprioception Emotionnelle qui peut être à l’œuvre dans cet effet antidépresseur, il est intéressant de noter que l’activité musculaire dans la région du front influence les fibres proprioceptives de la branche ophtalmique du nerf trijumeau. Ceci peut à son tour activer le PFC (Nda : Cortex Préfontal) ventromédian via le noyau trijumeau mésencéphalique et le locus ceruleus, ce dernier ayant des connexions directes avec l’amygdale et le PFC (Matsuo et al., 2015), structures critiques pour la régulation émotionnelle.

Nous émettons l’hypothèse qu’en injectant de la toxine botulique dans le front, de ce fait paralysant temporairement et réversiblement le muscle Corrugateur, nous influençons le signal proprioceptif envoyé le long de la branche ophtalmique du nerf trijumeau. Ainsi, au niveau neuroanatomique, la toxine botulique soulage littéralement la douleur et le stress des muscles Corrugateurs du front

[...]

En résumé, la Proprioception Emotionnelle est un concept utile pour comprendre l’influence que les muscles faciaux ont sur les centres émotionnels du cerveau.

*

Ceux qui s’intéressent au traitement proprioceptif et à la posturologie auront fait tout de suite le lien avec l’action des prismes posturaux qui agissent en modifiant les influx proprioceptifs des muscles oculo-moteurs de la branche ophtalmique du nerf trijumeau. La prise en charge du capteur rétino-trigéminé est d’ailleurs tout l’objet des travaux des Drs Quercia et Marino.

Dans les années 80, Martins da Cunha décrivait le Syndrôme de Déficience Posturale, et dans la clinique de celui-ci figurait la dépression (avec un accompagnement d’autres signes proprioceptifs, mais résistant aux traitements médicamenteux et disparaissant à la reprogrammation posturale). Les posturologues ont par la suite été fort critiqués  de vouloir prendre en charge de nombreuses pathologies diverses allant des troubles posturaux, à la dépression, en passant par la dyslexie, comme on peut le voir ici  : « Le fait que cette méthode soit ouvertement critiquée tient qu’elle parle ouvertement de guérison de la dyslexie (voire même d’autres choses) ».

Et voilà, les années passent, la recherche avance. Et de plus en plus d’études viennent confirmer les intuitions géniales de ce clinicien exceptionnel :) !

*********

A lire aussi :

Le Botox peut-il traiter la dépression? L’expression faciale peut vous guérir

Botulinum Toxin for Depression ? Emotional Proprioception

Voir aussi, dans un registre proche, la vidéo suivante (en anglais) :

Des chercheurs de Zurich montrent qu’ après 6 mois d’une légère paralysie faciale, provoquée par du botox, la manière dont le cerveau perçoit des stimuli sur la main est affectée (quand les posturologues disent que la proprioception fonctionne sur la base d’ une chaîne musculaire qui va de l’oeil jusqu’au pied).

Image de prévisualisation YouTube

 

Écrans, sédentarité et jeunes enfants

*

Écrans, sédentarité et jeunes enfants dans Le coin du chercheur

*

Les écrans et les jeunes enfants…

Un sujet tellement actuel et si délicat à aborder ! (Mais, les sujets difficiles, non consensuels, ça me connaît !  ;) )

Pourtant, quand on a compris le rôle de la proprioception et du système des neurones miroirs, on ne peut que s’interroger sur l’impact de nos nouveaux modes de vie (sédentarité, écrans,etc.) sur le développement des jeunes enfants…

*

proprioception mouvement

*

Comment les petits enfants développent-ils leur système proprioceptif ? C’est très simple : en bougeant ! Voilà pourquoi les enfants BOUGENT TOUT LE TEMPS ! Et voilà pourquoi il est essentiel de les laisser faire et même de les encourager à bouger ! En effet, le système proprioceptif est à la base de la construction de notre schéma corporel, cette représentation que nous avons tous de notre propre corps, de sa forme, de son volume, de la place qu’il occupe dans l’espace.

J’ai largement développé, sur ce blog, le lien fait par des chercheurs et médecins entre dysproprioception et certains troubles des apprentissages. Alors, ayant connaissance de ces éléments, je m’interroge : quel peut être l’impact de nos nouveaux modes de vie sur le développement des jeunes enfants ?

*

neurones miroirs

*

Nous possédons des neurones miroirs qui sont des neurones moteurs particuliers et dont la caractéristique principale est de s’activer non seulement lorsque nous exécutons une action mais aussi quand nous l’observons chez l’autre. D’où l’idée que le rôle de ces neurones serait de « simuler » intérieurement le geste réalisé par autrui. Or, la simulation opérée par cette catégorie si particulière de neurones moteurs se fait en utilisant les informations que leur procurent les systèmes sensoriels : la vision, l’audition et  la proprioception. De là vient la notion, qui a à présent supplanté celle de neurones miroirs, de « système des neurones miroirs ». Cette implication de notre propre système moteur, alors qu’on observe l’ action réalisée par une autre personne, nous permet d’accéder à la signification de cette action*.

*

Quel est le rôle fonctionnel des neurones miroirs ? [...] Leur propriété est de constituer un mécanisme qui projette une description de l’action, élaborée dans les aires visuelles complexes, vers les zones motrices. [...]

Une de leurs fonctions essentielles est la compréhension de l’action. Il peut paraître bizarre que, pour reconnaître ce que l’autre est en train de faire, on doive activer son propre système moteur. En fait, ce n’est pas tellement surprenant. Car la seule observation visuelle, sans implication du système moteur, ne donne qu’une description des aspects visibles du mouvement, sans informer sur ce que signifie réellement cette action. Cette information ne peut être obtenue que si l’action observée est transcrite dans le  système moteur de l’observateur. L’activation du circuit miroir est ainsi essentielle pour donner à l’observateur une compréhension réelle et expérientielle de l’action qu’il voit (Rizzolatti, 2006)

*

Ce système des neurones miroirs nous donne une compréhension réelle du mouvement de l’autre. Il nous permet non seulement d’observer les actions, mais aussi de prendre conscience de ce que la personne fait et pourquoi elle le fait. Le système des neurones miroirs crée un lien direct entre l’émetteur du message et le receveur : le geste ou l’action est comprise grâce au mécanisme de reflet.

Néanmoins, une condition indispensable pour que cela fonctionne est d’avoir déjà présent dans notre répertoire moteur (notre gigantesque médiathèque interne de capacités d’action) l’acte simple à reproduire. Cette représentation motrice peut exister dès la naissance, car il existe des Patterns moteurs préexistants.

Cependant, lactivité du système des neurones miroirs est étroitement corrélé à notre degré d’habileté ; plus nous maîtrisons une action, plus notre système miroir s’active lorsque nous l’observons chez quelqu’un d’autre. D’où l’importance de la pratique. L’observation visuelle n’est pas suffisante. Il faut voir et agir.

Observer puis reproduire, imiter pour apprendre, telle semble être la base du développement du petit enfant.

Ainsi, plus un jeune enfant aura répété une action motrice et mieux il sera capable d’en décoder la signification chez autrui. D’où l’importance de l’encourager à bouger, à stimuler sa proprioception… (Ce qu’il ne fera pas en restant passivement devant un écran durant de longues heures).

*

 Neurones miroirs dans Neurosciences

*

Par ailleurs, des chercheurs (Giacomo Rizzolati, directeur de l’Université de neurosciences à l’Université de Parme et Corrado Sinigaglia, Professeur de philosophie des sciences à l’Université de Milan) défendent la théorie selon laquelle les neurones miroirs seraient également impliqués dans l’apprentissage de la langue et s’appuient sur lhypothèse motrice du langage (quand on émet des sons, on fait des mouvements de gorge, de bouche, etc). Le langage verbal serait une évolution du langage gestuel, nettement plus ancien.

La perception de la parole produirait automatiquement une représentation motrice des gestes articulatoires perçus. L’auditeur comprendrait le locuteur grâce à l’activation de représentations motrices articulatoires lors de l’écoute des sons de la parole.

Le bébé observe les gestes oro-faciaux de la personne qui lui parle, tente de les reproduire en s’appuyant sur un répertoire commun d’actions primitives motrices permettant de générer des gestes oro­‐faciaux. Il apprend ainsi, petit à petit, par l’expérience répétée, à réaliser les mêmes gestes et à parler.

Pour illustrer cette théorie, je vous propose de visionner cette très jolie vidéo de l’émission « La maison des Maternelles », montrant un échange entre une maman et son bébé. Le bébé dévore sa maman du regard et met toute son énergie à essayer de communiquer avec elle (Clic sur l’image) :

« L’attention des adultes rend les bébés attentifs aux autres. »

*

Image de prévisualisation YouTube

*

*

Pour le contraste, je vous joins cette photo provenant d’un article du Figaro, que je vous invite d’ailleurs à lire (Clic sur l’image)

*

porte smartphone biberon

*

Enfin, pour alimenter encore la réflexion, je vous invite à visionner cette vidéo de l’expérience du visage impassible, commentée par le Dr Edward Tronick , directeur de l’Unité du développement de l’enfant de l’ Université d’Harvard (en anglais, mais vous pouvez avoir une traduction en cliquant sur l’icône « sous -titres » en bas, à droite, en visionnant la vidéo sur Youtube):

*

Image de prévisualisation YouTube

*

*

Voilà, je suis maman d’un enfant dysproprioceptif, dysproprioceptive moi-même et ayant grandi à une époque où les écrans étaient rares, je ne suis ni médecin, ni chercheuse. Je n’ai aucune qualification qui puisse me permettre de tirer des conclusions sur les conséquences d’une surexposition aux écrans, d’une vie trop sédentaire où jouer dehors, marcher pour se rendre à l’école, etc., deviennent des activités de plus en plus rares. Je ne suis pas qualifiée pour donner des conseils, ni pour asséner des leçons de morale.

Mais, toutes mes recherches personnelles sur le rôle de la proprioception et du système des neurones miroirs m’amènent à me questionner sur l’évolution de nos modes de vie et son impact sur le développement des jeunes enfants (Et si je peux vous amener à partager mon questionnement, cet article aura atteint son but :) ).

C’est pourquoi je souhaite vous faire connaître ces deux affiches réalisées par une graphiste et illustratrice, Bougribouillons, en collaboration avec une orthophoniste. Si vous souhaitez vous les procurer, vous trouverez des informations sur le blog de l’illustratrice : ICI

 

*

affiche_ecran1_web_570px Neurosciences dans Proprioception

*

affiche_ecran2_web_570px proprioception dans SDP/dysproprioception

************

Note 1 : La première photo est issue du site Santé log

Note * : Des études récentes semblent aussi montrer que c’est parce que nous reproduisons avec nos muscles, de manière imperceptible, le mouvement observé -donc, grâce à ce feedback proprioceptif- que nous arrivons à comprendre les mouvements et expressions d’autrui.

Sources des informations sur les neurones miroirs  :

LES SYSTÈMES DE NEURONES MIROIRS  Giacomo RIZZOLATTI, Département des Neurosciences Section de Physiologie Université de Parme (Italie)

NEURONES MIROIRS,  Pr F.HERAUT, Neurophysiologiste

Tango et neurones miroirs : les vertus mystérieuses du tango dévoilées par les neurosciences par Michel Habib,neurologue

D’un miroir l’autre. Fonction posturale et neurones miroirs

Les neurones miroirs : rôle et utilité

La perception de la parole, Théorie des neurones-miroirs

Neurones-miroirs, corps et langage

Et, pour finir, voici une petite vidéo de vulgarisation scientifique réalisée par l’INSERM, sur les neurones miroirs :

Image de prévisualisation YouTube

 

*

Lire un bon roman modifierait biologiquement le cerveau

*

lecture1

*

Voici une étude amusante qui prouve, une fois de plus, que le cerveau se modifie sous l’effet d’un apprentissage, d’une activité. Selon une expérimentation rapportée dans la revue Brain Connectivity, par une équipe de chercheurs de l’Université d’Emory aux Etats-Unis,  la lecture d’un roman entrainerait des modifications importantes au niveau cérébral.

*
Voici un extrait de l’ article du site Maxisciences sur le sujet :
*
Plus de connexions neuronales
*
Pendant 19 jours consécutifs, les cerveaux des candidats ont été observés à l’aide d’IRM. Les cinq premiers jours, l’imagerie cérébrale était réalisée pendant qu’ils étaient au repos. Les neuf jours suivant, ils ont été amenés à lire neuf passages de 30 pages de Pompeii, de Robert Harris un texte qui combine des événements fictifs et dramatiques. Dans ce roman, le personnage principal éloigné de Pompéi, découvre les fumées qui se dégagent du volcan et « tente de revenir à Pompéi à temps, pour sauver la femme qu’il aime ». « Cela raconte de vrais évènements d’une façon fictionnelle et dramatique. Il était important pour nous que le livre ait une trame narrative forte », souligne le Pr Berns. Un questionnaire suivait les lectures pour s’assurer que les participants avaient lu correctement, puis ils subissaient une nouvelle séance d’IRM. Une fois toutes les observations cérébrales réalisées et collectées, les chercheurs ont comparé les résultats. Au cours des matinées qui ont suivi la séance de lecture, ils ont ainsi constaté une augmentation du nombre de connexions neuronales dans la région du cortex temporal gauche. Une aire associée à la réceptivité de la langue. De même, une connectivité accrue a été observée au niveau de la région du cerveau associée à des représentations sensorielles venant du corps. Mais ces augmentations n’étaient pas que ponctuelles.
*
Un changement durable
*
« Même si les participants ne lisaient pas le roman, quand ils étaient face au scanner, ils ont conservé cette connectivité accrue. Nous appelons cela une “activité de l’ombre”, presque comme une mémoire musculaire« , indique le Professeur Berns. Cette persistance s’est même prolongée cinq jours après la lecture du roman, selon les chercheurs. Ceci prouve que les effets de la lecture s’inscrivent dans une certaine durée. « Les changements neuronaux que nous avons trouvé sont associés aux systèmes des sensations physiques et des mouvements, ils suggèrent que lire un roman peut vous transporter dans le corps du protagoniste. Nous savions déjà que les bonnes histoires pouvaient vous faire prendre la place de quelqu’un au sens figuré. Aujourd’hui, nous voyons que quelque chose peut aussi se produire biologiquement », commente le Pr Berns. Par ailleurs, l’effet s’est prolongé cinq jours après la lecture du roman. « Il reste la question toujours ouverte, de savoir si ces changements pourraient durer encore davantage. Mais le fait que nous les détections durant quelques jours, à partir de passages pris au hasard, suggère que nos livres pourraient avoir un effet plus important et durable sur la biologie de notre cerveau ».
*

***********
*
penseur rodin
*
*

Ce qui est à noter et qui est quand même extraordinaire quand on y pense, c’est que le seul fait de lire des scènes de haute intensité dramatique et d’action est à l’origine de changements neuronaux :

 » une connectivité accrue a été observée au niveau de la région du cerveau associée à des représentations sensorielles venant du corps. »

« Les changements neuronaux que nous avons trouvés sont associés aux systèmes des sensations physiques et des mouvements, ils suggèrent que lire un roman peut vous transporter dans le corps du protagoniste. « 

 

« Presque comme une mémoire musculaire » : tout est là, tout est dit. Et nous touchons du doigt la puissance du rôle cognitif de la proprioception !

*

Ce sont les neurones moteurs  (cellule nerveuse qui est directement connectée à un muscle et commande sa contraction) qui permettent au cerveau d’ordonner au corps tous les gestes dont celui-ci est capable. À chaque geste, chaque action, comme se lever, tourner la tête ou claquer des doigts par exemple, correspond donc un ensemble de neurones spécialisés.

Le professeur JP Roll a démontré que toute nos actions motrices laissent une trace dans notre cerveau, sous formes de connexions neuronales, au point qu’il a pu constituer une véritable « neurothèque » où sont conservées les signatures sensorielles d’actions diverses de forme et de taille différentes et réalisées à des vitesses variées (Il lui suffit ensuite de stimuler les capteurs proprioceptifs des tendons musculaires avec des vibrations pour donner au sujet la sensation illusoire de ces actions). Nous sommes là au cœur de la plasticité cérébrale.

Il existe une classe particulière de neurones moteurs, les neurones miroirs, qui possèdent la surprenante vertu de fabriquer dans le cerveau de celui qui regarde, l’image du mouvement de celui qui est en train de l’exécuter. Or, des études récentes semblent montrer que c’est parce que nous reproduisons avec nos muscles, de manière presque imperceptible, le mouvement observé (grâce donc à ce feedback proprioceptif) que nous arrivons à analyser les mouvements et expressions d’autrui.

Ce qui est finalement le plus surprenant dans cette étude sur la lecture, c’est que ce n’est pas la vision du mouvement d’autrui (et le feedback proprioceptif qu’elle entraîne), qui simule l’action dans notre cerveau au point de provoquer des changements neuronaux liés aux sensations physiques du mouvement, c’est le seul fait de l’imaginer !

Néanmoins, ça n’a rien de surprenant au vu des découvertes récentes sur la proprioception, comme nous le montre cette étude, rapportée dans Science et vie:

*

Difficile à croire mais, oui, il est possible de stimuler ses muscles par la seule pensée et donc de les faire travailler !

Pour preuve, en 2014, une équipe de l’université de l’Ohio a plâtré l’avant-bras de 29 personnes cobayes (non sportives) avant de les séparer en deux groupes. Les premiers devaient s’imaginer qu’ils contractaient leurs muscles pendant cinq secondes, quatre fois de suite, suivi d’une minute de repos. Le tout répété 13 fois durant une séance et cela cinq jours sur sept durant un mois. Les seconds n’avaient aucune consigne

A la fin du mois, le premier groupe avait perdu 24 % de sa force dans l’avant-bras alors que, dans l’autre, le déclin était de 45 % !

Le sens proprioceptif en action

L’explication, on s’en doute, est neurologique. Le fait de penser faire du sport stimule les cortex prémoteur et moteur qui contrôlent le sens proprioceptif (perception, consciente ou non, de la position de nos membres dans l’espace). La pensée active ainsi les récepteurs proprioceptifs et de fait excite les muscles qui se contractent (légèrement) sans aucune action physique.

 *

C’est fou quand y pense ! Fascinante proprioception !

*
*

Le principe de neuroplasticité

Le Pr Hugues Duffau (neurochirurgien, professeur des universités – praticien hospitalier français) nous explique, dans une vidéo de 10 minutes, les grands principes de la neuroplasticité, loin de la représentation figée du cerveau qu’a longtemps véhiculé la neurologie. Par ailleurs, il déclare (1) :

« Nous avons tous un cerveau différent, et la géographie fonctionnelle de chaque cerveau se modifie aussi avec le temps [...]. Contrairement à ce qui nous a été enseigné, telle zone du cerveau ne correspond donc pas à telle fonction : tout fonctionne en réseaux neuronaux, grâce à des fibres de substance blanche, autrement dit des « câbles ». Si ces câbles s’avèrent similaires d’un individu à l’autre, leurs terminaisons sont en revanche très variables »

Ce principe de neuroplasticité est important pour comprendre que le cerveau n’est pas un organe figé, dont chaque région correspondrait à une fonction spécifique. Au contraire, le cerveau est « plastique », de nouvelles connexions peuvent se créer en permanence, à la conditions que les fibres de substance blanche, autrement dit les « câbles » soient intacts.

Le traitement proprioceptif des troubles des apprentissages s’appuie sur cette neuroplasticité : en donnant au cerveau de nouvelles et bonnes informations proprioceptives et sensorielles, auparavant déficientes, de nouvelles connexions vont pouvoir se créer et le cerveau va pouvoir se réorganiser.

*

Image de prévisualisation YouTube

 

**********

*

Si vous souhaitez aller plus loin, le Pr Duffau aborde, dans cette autre vidéo, une compréhension scientifique des émotions où il esquisse les bases de l’autisme :

*

Image de prévisualisation YouTube

**

Et, dans cette dernière vidéo,  il nous explique comment il opère le cerveau ouvert avec phase de conscience des patients  :

*

Image de prévisualisation YouTube

*

******

*

Dans cette émission de « C à vous », on peut observer une de ses opérations :

*

Image de prévisualisation YouTube

******

Et pour finir, voici une conférence, un peu ardue, sur le sujet (avec un petit passage sur la dyslexie  à 31min42sec):

*

Image de prévisualisation YouTube

 

Note (1) : Opération à cerveau « ouvert », sur JDD papier

*

Proprioception et neuroplasticité

*

cerveau clignote

*

Pour bien démarrer l’année ;) , je vous propose de visionner ces quatre conférences qui ont été données récemment lors d’une journée exceptionnelle de formation en Neurosciences à l’Université de Bourgogne sur le thème de la Plasticité Cérébrale.

Dans la première, le Dr Quercia présente les résultats d’une étude, qui vient de se terminer, sur les interférences entre le son et la vision chez l’enfant dyslexique (Note : haussez le son pour entendre les échanges dans le dernier film présenté).

Les deux suivantes sont consacrées à la proprioception, celle du Pr  JP Roll présente notamment le rôle majeur de la proprioception dans le geste d’écrire (Note : Pour aller plus loin, lire aussi « La proprioception : un sens premier » de JP Roll).

Enfin, le Pr DUFFAU, neurochirurgien réputé, s’attaque au « dogme » du localisationnisme qui pour lui doit être « brûlé » pour faire place à une organisation connectomale dynamique du cerveau.(Note : cette conférence étant un peu ardue, je vous conseille déjà de visionner un film présentant une de ses opérations, pour mieux comprendre de quoi il retourne : ).

*

  • Dr Patrick QUERCIA – Interférences auditivo-visuelles et neuro-plasticité de l’enfant dyslexique

*

Ophtalmologiste, chercheur associé INSERM U1093 – Cognition Action et Plasticité Sensorimotrice et co-directeur du Diplôme Universitaire Perception Action et Troubles des Apprentissages, il explore depuis 2002 les relations entre proprioception et dyslexie de développement au travers de la plasticité sensorimotrice.

Image de prévisualisation YouTube

*

  • Pr Jean-Pierre ROLL et Régine ROLL.

Spécialistes au CNRS de Neurophysiologie Fonctionnelle et de Neurosciences Intégratives et Cognitives à l’Université de Provence, leurs travaux ont eu comme fil conducteur l’étude des déterminants neurobiologiques de la perception du corps et de ses actions, notamment au travers du rôle des informations proprioceptives. Ces travaux ont été récompensés par l’attribution du Trophée National de l’Innovation (mention recherche).

Pr Jean-Pierre Roll – Proprioception et neuro-plasticité

« La main écrit sur le papier … et sur le cerveau »

Image de prévisualisation YouTube

*

Pr Regine Roll – Proprioception et neuro-plasticité

Image de prévisualisation YouTube

*

Pr Hugues Duffau – L’erreur de Broca. Pour en finir avec 150 ans d’erreurs sur le cerveau

*

Ce neurochirurgien connu pour ses opérations à cerveau ouvert avec phase de conscience des patients est un spécialiste mondialement reconnu de la plasticité cérébrale in vivo. Il a reçu la Victoire de la médecine en 2009 et en 2010 ainsi que la médaille Herbert Olivecrona, décernée par l’institut Karolinska de Stockholm, l’équivalent du prix Nobel de neurochirurgie. Ses travaux lui ont également valu le Grand Prix de Cancérologie de L’Académie Nationale de Chirurgie en 2012.

*

Image de prévisualisation YouTube

 

Thérapie Asie |
Themassagetube |
Hubert90 |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | Pharmanono
| Le blog de Jacques Le Houezec
| Sevragebenzo